US009164576B2

a2z United States Patent (10) Patent No.: US 9,164,576 B2
Gehani et al. (45) Date of Patent: Oct. 20, 2015
(54) CONFORMANCE PROTOCOL FOR 5715413 A % 2/1998 Ishaietal. ... 715/825
HETEROGENEOUS ABSTRACTIONS FOR 5,760,788 A ¥ 6/1998 Chainini etal. 345/474
5,929,867 A 7/1999 Herbst: t al.
DEFINING USER INTERFACE BEHAVIORS 3963203 A 10/1999 Goldbera et al
5,966,691 A 10/1999 Kibre et al.
(75) Inventors: Samir Gehani, Cupertino, CA (US); 5,999,195 A 12/1999 Santangeli
6,118,455 A 9/2000 Hidaka et al.
Tyler €. Rayner, San Jose, CA (US) 6,184,879 Bl 2/2001 Minemura et al.
R . 6,388,683 B1* 5/2002 Ishaietal. 715/765
(73) Assignee: Apple Inc., Cupertino, CA (US) 6469711 B2 10/2002 Foreman et al.
6,480,203 Bl 11/2002 Carter et al.
(*) Notice: Subject to any disclaimer, the term of this 6,504,545 Bl 1/2003 Browne et al.
patent is extended or adjusted under 35 6,512,522 Bl 1/2003 Miller et al.
US.C. 154(b) by 600 dayS 6,684,385 Bl1* 1/2004 Balley etal. i 717/109
(Continued)
(21) Appl. No.: 13/231,762 OTHER PUBLICATIONS
(22) Filed: Sep. 13,2011 Invitation to Pay Additional Fee and, Where Applicable, Protest Fee,
65 Prior Publication Dat partial search report, Feb. 27, 2013, 74 pages.
(65) rior Publication Data (Continued)
US 2013/0067361 Al Mar. 14, 2013
Primary Examiner — Dino Kujundzic
(D IGnOtt-?glé/048 (2013.01) (74) Attorney, Agent, or Firm — Novak Druce Connolly
: Bove + Quigg LLP
GOGF 3/00 (2006.01) Quigg
GOG6F 9/144 (2006.01) (57) ABSTRACT
GOGF 3/0481 (2013.01) . o ..
(52) US.Cl An authoring system for building an application that has a set
CPC ‘G06F 3/00 (2013.01): GOGF 8/34 (2013.01); of graphical objects and is for performing several operations
- ’ G’O 6F 3/04817 (2013' 01)’ on several graphical objects in response to several user inter-
58) Field of Classification S h ’ action events. The authoring system includes (1) a first set of
(8) UISP Co assitication Searc 715/762. 763 tools for defining a first description of a first operation that is
g lt """ ﬁlf """"""" lt """""" h hist ’ to be performed on a first graphical objectand (2) a second set
ce application liie for complete search fustory. of tools for defining a second description of a second opera-
(56) References Cited tion that is to be performed on a second graphical object. The

U.S. PATENT DOCUMENTS

5,359,712 A 10/1994 Cohen et al.

5,481,741 A * 1/1996 McKaskleetal. 345/522
5,509,116 A * 4/1996 Hiragaetal. ... 715/762
5,566,295 A * 10/1996 Cypheretal. 715/763
5,636,340 A 6/1997 Bonneau et al.

5,659,793 A 8/1997 Escobar et al.

5,692,117 A 11/1997 Berend et al.

® % Behavior 1
® % Behavior 2
% Behavior 3

® %E Behavior 4

2% Behavior 1
% sehavior 2
1% sehavior 3
$¢ Behavior 4.

second set of tools provides at least one different tool for
defining the second description than the first set of tools
provides for defining the first description. The authoring sys-
tem also includes a conformance module for modifying at
least one of the received descriptions to ensure that the
descriptions of both the first and second operations are in a
uniform description format.

18 Claims, 25 Drawing Sheets

® % Behavior 1
® ¢ Behavior 2
¥ Behavior 3

@ % Behavior 4

% Behavior 1
% Behavior 2
$% Behavior 3
¢ Behaviord.
h

US 9,164,576 B2
Page 2

(56)

6,701,513
6,747,650
6,828,971
6,867,787
6,928,613
6,934,696
6,947,044
6,956,574
7,106,275
7,199,805
7,336,264
7,336,280
7,370,315
7,483,041
7,594,180
7,607,137
7,643,037
7,917,755
8,046,679
8,140,894
2002/0015050
2003/0146915
2004/0111673
2005/0231512
2006/0150148
2006/0248451
2007/0159487
2008/0072166
2008/0184139
2009/0309881
2010/0064222
2010/0107079
2010/0146425
2010/0201692

References Cited

U.S. PATENT DOCUMENTS

BL*
B2
B2
Bl
Bl
BL*
Bl
Bl
B2
Bl
B2

Al*
Al

3/2004
6/2004
12/2004
3/2005
8/2005
8/2005
9/2005
10/2005
9/2006
4/2007
2/2008
2/2008
5/2008
1/2009
9/2009
10/2009
1/2010
3/2011
10/2011
3/2012
2/2002
8/2003
6/2004
10/2005
7/2006
11/2006
7/2007
3/2008
7/2008
12/2009
3/2010
4/2010
6/2010
8/2010

Baileyoccoceoenenne

Turner et al.
Uesaki et al.
Shimizu et al.
Ishii et al.

Williams et al.

Kulas
Cailloux et al.
Brunner et al.

Langmacher et al.

Cajolet et al.
Nelson et al.

Lovelletal.
Langmacher et al.
Langmacher et al.

Hauser et al.

Langmacher et al.

Giliyaru et al.
Neil

Thomson et al.

Kawai et al.
Brook et al.
Bowman et al.
Niles et al.

Beckett et al.

Szyperski et al.
Felt
Reddy

Stewart et al.

Zhao et al.
Tilton

Langmacher et al.

Lance et al.
Niles et al.

...... 717/109

........ 706/47

...... 717/100

........ 714/15

...... 717/109

...... 715/762

...... 715/769

2011/0181521 Al 7/2011 Reid et al.
2012/0050309 Al 3/2012 Tsuchida et al.

2013/0132875 Al 5/2013 Allen et al.
OTHER PUBLICATIONS

U.S. Appl. No. 13/221,287, filed Aug. 30, 2011, Gehani, Samir, et al.
U.S. Appl. No. 13/231,767, filed Sep. 13, 2011, Gehani, Samir, et al.
U.S. Appl. No. 13/231,770, filed Sep. 13, 2011, Gehani, Samir, et al.
Author Uknown, “LiveType 2: User Manual”, Month Unknown,
2005, pp. 1-157, Apple Inc., USA.

Jones, Jerry, “India Pro Special Effects Titler,” The Ken Stone Index,
Software Review, Apr. 1, 2002 Month Unknown, pp. 1-18, USA.
Stone, Ken, “The Basics—Editing with Transitions in Final Cut Pro,”
The Ken Stone Index, The Basics—Getting Started, Jun. 12, 2001,
pp. 1-8, USA.

Stevenson, Nancy, et al., “Special Edition—Using Microsoft
PowerPoint 97,”"Month Unknown, 1997, 18 pages, Que Corporation,
Indianapolis, USA.

Author Unknown, “Using Adobe Flash CS4 Professional,” Updated
Mar. 5, 2009, 474 pages, Adobe Systems Incorporated, San Jose,
California, USA.

Author Unknown, “Adobe Director 11: User Guide,” Month
Unknown, 2008, 498 pages, Adobe Systems Incorporated, San Jose,
California, USA.

Author Unknown, “Adobe Premiere Pro CS3: Classroom in a Book™,
Month Unknown, 2008, Chapters 9 and 10, 27 pages, Adobe Systems
Incorporated, San Jose, California USA.

Spencer, Mark, “Working with Keyframes in Motion, Part 1: Creat-
ing and Manipulating Keyframes,” The Ken Stone Index, Feb. 11,
2005, pp. 1-7, USA.

Stone, Ken, “Motion Paths and the Bezier Handle in FCP,” The Ken
Stone Index, Aug. 13, 2001, pp. 1-11, USA.

Gehani, Samir et al., “Merging User Interface Behaviors”, PCT/
1B2012/002315 International Search Report and Written Opinion,
dated May 24, 2013, filed Nov. 13, 2012, 14 pages.

* cited by examiner

US 9,164,576 B2

Sheet 1 of 25

Oct. 20, 2015

U.S. Patent

0tl

[2451y
(43 Il
A ;
i i
" ™~
P .M r—
rel N = vowisod-za8euwy o oo oel
uw %]
(A seA ‘X sEA}BWEY DURY UODDUNY UMOBLINGL u .
CEf dung uny & w.m.wx\\mw\ ,,,,, i & £UMI 4
'd
suffawLl 1ers T &= & oIt
LTl
sasuodsay JL3AT mﬁ.xc) e LU 4
1 10IABLDG
0z 0T ‘ &
5 1ojARYDY ¥
P 101ABLRY
* -. § 3U8d¢
£ aoeyay «ﬁ. / £ ausng
zioineyag P / 7 BusIs
7 ‘/ [suang
14omeyog ¥ iy
\\\ iy
¢l Sl Ny B w,
' 001

US 9,164,576 B2

Sheet 2 of 25

Oct. 20, 2015

U.S. Patent

Z N3y

0ve
J10JRI00SS
Joraeyog-Anuyg

1544

54
sioiaeyag

I07BIO0SS Y
asuodsay-juaayg

0¢e

senpuy 42 0zz
o sosuodsoy SJUSAH
— <
Ieurje(g s1 Jouge(ot
asuodsoy JUSAT
A
.Il A 4
»| S0C
»| 20BLIOJUT JOSN)
>
007 waoperd Suuomny

US 9,164,576 B2

Sheet 3 of 25

Oct. 20, 2015

U.S. Patent

€ 24n31,J

<

43

sonpug

00€ uwoneorddy g

0ce

SOU90g

S0€

slojoweied

. °
4
° ° —
° ° 0¢e
¢ osuodsoy osuodsoy [
43 08¢ <I¢
dpuey oursuy
(g1 0d41) q odAL uonnooxy
¢ asuodsoy osuodsoy J01ARYY
° ° SLE
° °
. °
“ipuen
I Owﬁomwum DwﬂOQmDM -

$9¢

AdelIAjuy I9sN

0Tt

synduy 195}

U.S. Patent Oct. 20, 2015 Sheet 4 of 25 US 9,164,576 B2

400
RN

(s)
Y

Receive event

—J,

l

410

[Find entity(entities)]/
l 415

Find behavior(s)]/
l 420

[Identify response(s) I/

l 425

Execute response(s)

N

Y
(o)

Figure 4

US 9,164,576 B2

Oct. 20, 2015 Sheet 5 of 25

U.S. Patent

uonewiue abjnqg :esuodsay
dnyono} :Juaag

G 24n31J ¢ Jolneyeg

uonewiue mo|b :esuodsey
UMOPLONO} :JUBAT
| Joliaeyeg

2
1

i

US 9,164,576 B2

Sheet 6 of 25

Oct. 20, 2015

U.S. Patent

019

¥ Joineyag #
€ Joineyag ,._Q
7 Joineyaq ﬁ
1 J0IABYDY #/

9 2n31]

¥ Joiaeyag .ﬁ.
€ Joineyag #

Z Lo_>m:mmﬁq

T Joeyag .ﬁ.

US 9,164,576 B2

Sheet 7 of 25

Oct. 20, 2015

U.S. Patent

STL

01L

{
i
1
H
i
“ s
. {
i
| X- = uopisod-za8ew)
{
}
i
| {A JeA ‘X JeA)dWIRL DUNY UOROUNY umopydnoy
{
i po—
N 057 dudsuny A
” auljswi] UElS 4
i
, sasuodsay a3
i
H
8 1 10ineyog ®
i
_ 1]
{
i
, 7
| y y
! 029 S19

L 24NSL]

¥ Joineyoag ﬁ.
¢ JolAeyag .ﬁ.
Z Joineyag .ﬁ.

1 Joineyag g

-

US 9,164,576 B2

Sheet 8 of 25

Oct. 20, 2015

U.S. Patent

[]

uoneloy
a1eds

uonisod
TUuod| A

§ 24n31J

®* & ¢
L
L
® o o
- N m
c <
o O
EU
PN

U.S. Patent Oct. 20, 2015 Sheet 9 of 25 US 9,164,576 B2
: 925 ! ! I
| i i |
|) | B e— |
| i ! |

Behavior 1 Behavior 1

| * 1930 | ol |
: @ ¥ Behavior 2 //: ! @ X% Behavior 2 !
| L% Behavior 3 ! | L% Behavior 3 !
| $¢ Behavior 4 ! E> : % Behavior 4 |
| i i |
| i i |
: Wiconl : : ¥ iconl :
| Position ° | | Position ° |
I Scale © | ! Scale ° I
: Rotation ® © : : Rotation ® © :
| | s | '] ' | i ' } ' i s

| :00 101 102 : 1 00 01 102 :
| i i |
| / i i |
| / i i |
Lo e gy e e e o o o e o o e o e e i e ot o e 4 L i i ot s o e o o e s o o o ot o o o o s o J

4 900 935 /

0
r-—-——"™""~""™®>"=>"">""™>"™""™"™"™"™>"™"™"™>"™"™"™>">"™""™77 i F--- -~ - ~—~"""7"">""=>""">"""=>""=>""=>"="=""=">-"=-="=-7 |
| ! i |
| i i |
!) ‘ ‘ o !
| i ! |
: '#' Behavior 1 ; : -#' Behavior 1 |
| | | 63 |
! @ -ﬁ Behavior 2 ! ! @ # Behavior 2 :
| £t Behavior 3 ! | £t Behavior 3 |
: $¥ Behavior 4 ! : $¥ Behavior 4 |
| [i / 1
|
B ! <::|] ee— |
[! ! A= — = |
: ¥iconl !) A Icon% !
: Pasition © : : Position © :
I Scale © i ! Scale e ° |
: Rotation @ ©° : : Rotation ® © :
| I : i . 1 ' ; ! ' 1 N 1 .

. 00 o1 02 i ‘ 00 o1 02 l
| i

. 2 ! I
| H i |

Figure 9

US 9,164,576 B2

Sheet 10 of 25

Oct. 20, 2015

U.S. Patent

Al
vy
O
—
ses

osuodsoy

asuodsay

01 24n31.]

asuodsay

0S01
eYNs |

001

JotAryeg

0¢01
Amuy
*
§C01
Amuy
L
0201
Amug
R :
¢T0T 0101 $001
Amuyg Amnuyg)i teTalN
/\ =
0001

[1 2ansif

US 9,164,576 B2

Sheet 11 of 25

SOUANY

T —

511

SIuB3AY

g

Oct. 20, 2015

oﬁ 1 L &€TT
: L9611 SOSUOUSOY | g ﬂ EUSES ! satnuy
Jesjpuely [y odAy esuodsey o
611
I3ppuey { sd AL esuodsay
+ \ Oell ST
0011 JOPU mputy |
181IBALOD IOTARISY] Lpwg |
¥ ndng
g OF1l c
. %811 U8l N ¥ Seil
puBig I91ISAL0D > oFeunpy JoNoeys
R i/ < ST / <
oo | LIGTINOONTY Ll In mﬁw - asuodsay BOIPHOY
asuodsay Hpuo,
CITT 1eipuvy v 9dA], asuodsey -
ot
FOLIDATO
v 2 omBuy uoHnsaxy

SI0TARYSE

0071 voneayddy ying

A%

IOV
Hoag

sinduy 08y

U.S. Patent

U.S. Patent Oct. 20, 2015 Sheet 12 of 25 US 9,164,576 B2

1200

Find entities
14 L1220
Select next entity
¢ 1225
No
Matching behaviors?
1230
[Select next behavior]/
>y 1235
[Execute next response }/
1240
Yes
More responses?
1245
1250
Yes

Figure 12

U.S. Patent Oct. 20, 2015 Sheet 13 of 25 US 9,164,576 B2

1300 ()
\\ Start

v 1305

Receive event and behaviors

!
\ 4 1310

Select next behavior

Y 1315

No .
Matching event?
Yes

1320

") No
Conditions exist?

l 1330

Yes
1325
Identify selected behavior as
All conditions met? behavior that has responses to
execute
No

1335

No

Figure 13

US 9,164,576 B2

Sheet 14 of 25

Oct. 20, 2015

U.S. Patent

Sevl
0evl

pI 2481,
01vl
CTH))
(g ',dn(4na, ‘DuldsuoreUISaP)aUISO 08 IUBWNI0P
‘audosuoneuysap Jep
?auads o}
_ aue3s§ 0f 4N _ :aweN asuodsay *.
l Ea
— — el d
SThT 0THT a cee
d awielq ux3 ﬁ. #
4 awel4 Jajug
4 dn yonoy sgng dig
4 PaACIA Yonoj,
3uUddS 0} UN) q umoq yonoy # #
_ EVERIN | :owen Joineyag
siolneysg OO O\
384!

oovl

US 9,164,576 B2

Sheet 15 of 25

Oct. 20, 2015

U.S. Patent

01ST

01¢T
SIST

0Csl

[/]

o1 24n31g
()
- [+]
auads of
_ | :oweN asuodsay
T £
™ q awiel4 1Ix3 Seiq doag
I~ 4 awel4 Jaug
<4 dn yonop & ﬁ.
L/ @@A yop | (4 mc_mu,cSUAo aweN) 4 panon ;uso._._
" ®E ¢ % annae umoy oyl jo D($ Auy) SOSI suoBIpuo) aging di4
T 4 umoq yanoy ﬁ. .a.

_ auad§ 0] | :swen Joineyag

S siolneyag 000

OIST 0161

*

0ov1

U.S. Patent Oct. 20, 2015 Sheet 16 of 25 US 9,164,576 B2

i

|

i

i

i

% Bulge ¥ Bulge :
* Glow ¥ Glow :
2 To Scene #QTO Scene !
i

i

|

i

i

|

i

J o

|

|
i
H
i
i
% Bulge #* Bulge :
¥ Glow #* Glow i
#* To Scene i'-(&To Scene :
' i
|
!
i
i
!
y, J
!
1646 1615
R 7, V- S L 1626
| ! | J
t i | i
| { | i
| ‘ [f
{ i
: ¥ Bulge | : # Bulge i
i {
! ¥ Glow] | ¥ Glow %
i 2% To Scene i I % To Scene f
l | i
: ’:> | |
| ! | !
{ i | {
! , | 5
| Scene2 / i | f
! Scene 1 ‘ ' f
BN J | o
. S W e
1625 1630

Figure 16

US 9,164,576 B2

Sheet 17 of 25

Oct. 20, 2015

U.S. Patent

9¢91

LI 23]

P91

42!
191

evol

91

US 9,164,576 B2

Sheet 18 of 25

Oct. 20, 2015

U.S. Patent

91 24nS1,y

€0

™~

00: 8T

w81~

& £ uod| ¢

® cuod| 4

€81

K.

® Tuod| ¢ 0P8I
T @uad§
S]] doog OI8T | 71gy
aus3s oL .*. BUBIS O <~ T UOI| 2524
Sesa 3% _——— 1181
oging %t !\.Mﬁz
eTEIE uouewWw.Ioju| BUBDS
slolAeyag —_
d S081
HE Apedp
o)Co H(0o) uoneoy
C o YC ss)(st) uonisod 1 0u99s T
/) A /X 0E31
\ \mw_tmo_nxn_ 193[q0
[4%:]! 1€81 (44:1! €781

US 9,164,576 B2

Sheet 19 of 25

Oct. 20, 2015

U.S. Patent

— 0¥81

siojaeyag

' fo—0o__ >u_UNQ (o]

aa Joyouy
oD DCaD) vonmmon

CeroCsr) o
C o)(ss Y(C st) uousod

Z A X 081

sanJadolid Pelqo

61 2431,
- €0:) 1o o)
. | _ , SI81
1 ' ! . _ . .
o e Aioedo
o @ uoneioy
o= ® 9IS
S061 o @ uonisod
T Uod| a—
EDERTS
dosg X%
N e o T U0J| UMmop
.* Sayanog Jasn 1asa(
gesq e
o [voues] couew
as 3 uopeuw.Iou| BUIS

1 8Ua8 T

1281

0081

U.S. Patent Oct. 20, 2015 Sheet 20 of 25 US 9,164,576 B2

2000
2005
[Receive user input
2015
})10
Received behavior? D1splay.keyframe graphs
according to user input
Yes 2025
2020
Change .
Notify user —
Yes 2035
2030
.) / Yes)
First behavior? Display response —»
No 2045
2040
i e
Yes 2055
2050 ‘
Display keyframes >
Yes
2060
Resolve conflict and display
keyframes
-
End

Figure 20

U.S. Patent

Oct. 20, 2015

Sheet 21 of 25

US 9,164,576 B2

rr RNk b -
| & ; [-1-n N
| 3 : 1] B
| I ! s fw 1 .
Dol £ Fiip : e % Flip f
j . ; | '
; % Buige 1 | 3% Bulge ‘;
% Drag P T Dreg f
x £ Fade ‘:> # Fade t
i ! !
£ Beep | t ¥ Beep !
¥ lcon 1 : ‘ ¥icon 1
Position ‘ ; Position »
Size : | Size !
Rotation ! 11 Rotation !
] Opacity e <) ; : Opacity ‘ |
1815 00 01 o2 0\ U815 T 01 02 !
. |
....MW)/.,L..._v_“‘.,.N_.,—---———- T TR | - Fl
2105
i 1
B ‘
B . :
el & Flip !
; {5 Bulgs j ;
! ;
i) t
! £ Drag ; ; |
X :
; ¥ Fade :; ! |
: %} BE!ep t<[_~]‘ :
t y !
: ! !
: ¥ jconl ﬁ ' [Fileon 1 f
| Position e S%’Q‘% ! Pasition !
! Size e ¥ ! Size !
; Rofation e— o | Rotation :
: Opacity e——————0 . 1 Opacity » J\
B
 \ 8L 00 01 02 A8 oo 01 02 !
§ | :
—————————————————————————————————— R —:/7-» Wl e e G b e v - e
2120 2113
oo Tr oy r e
| A > |
i !
P ¥ Flip |
i
: L Bulge |
i
| & Drag :
i
i
§ ¥ Fade '
. ! :
| % Beep | Figure 21
I ¢
: ¥ leon i
I Position e~ o 1
! Size e o ;
: Rotaton e s 2170 !
; Opacity e————%==xT 3165) |
IBLS :00 03 02/ :

U.S. Patent

Oct. 20, 2015 Sheet 22 of 25

2200

2205

Receive image

l 2210

Find center pixel

2215

Center pixel
supports transparency?

US 9,164,576 B2

2220

Select next direction

<
v 2225

Select next pixel

2230

Selected pixel
supports transparency?

No
l 2235

Set selected pixel as boundary pixel

l 2240

Yes

More directions?

2245

Draw boundaries

End

Figure 22

US 9,164,576 B2

Sheet 23 of 25

Oct. 20, 2015

U.S. Patent

2330

U

-

2310

2325 2335 2330

2305

X—> 07
2345
___7..__.,._\<2

370

2315

2320

Figure 23

US 9,164,576 B2

Sheet 24 of 25

Oct. 20, 2015

U.S. Patent

pz 2mS1
mmﬂwﬁmuom?« omﬂmﬁooaaq‘ mﬂwmpmmuo%x\ omwmuﬁoomw/«
oudog-Amuy Joraeyag-Anuyg osuodoy-1uoAy JUDAF-UOTIPUO))
A
4 Y
Sore 6¥7¢ T 08¢ 0LvT ST
sojepduwa], SOUA0g sonmuyg sIo1ABYdY SjuoAq SuonIpuon
Qu20g
e e = —
A A
Y
SLYT
0S¥T ovye sosuodsoy
1oSeuRy SOUOS [103euE
ydein sweiphoy
H H 01v¢ R824
v / v /
mmvwo«o o mvvwwmcﬁz 1o3eUBIN IourR(] IourR(] Jsuya(]
Arepunog sowpIpAoy ssueunoyuoy) [4® osuodsay JuoAy uonIpuo))
ooww@xooao Y \d
Adusredsuel], |..I" SOvT Q0BJINUT J9S) l—
00¥C wiopeyq Suoyiny

US 9,164,576 B2

Sheet 25 of 25

Oct. 20, 2015

U.S. Patent

§C 24n3L]
0vST
N
oot _ 01ST 0€ST
\ | - >
(shun
JI0MIN sa01A8(] ndu] Surssa001g Nod
N\
S0ST
oo e (ndo) mun
N, oA Suissoo01g SELAIN
soydein
N N =
| 0TSt S1ST

N\

1944

334

005¢

US 9,164,576 B2

1
CONFORMANCE PROTOCOL FOR
HETEROGENEOUS ABSTRACTIONS FOR
DEFINING USER INTERFACE BEHAVIORS

BACKGROUND

Designing and developing software applications for run-
ning on computing devices is a daunting task, as it requires
special knowledge and skill as well as experience. Everyday
users of computing devices who have the desire and creativity
to build their own applications are often driven off by com-
plex and incomprehensible coding syntaxes and unfamiliar
concepts like compiling and debugging. For this reason, most
people opt to purchase software applications written by pro-
fessional developers and run the applications on the comput-
ing devices they own. Several application-building applica-
tions have been developed to lower the barrier to writing
software applications. However, these application-building
applications still bear difficulties to overcome by everyday
people.

BRIEF SUMMARY

Some embodiments of the invention provide an authoring
platform for authoring software applications by defining user
interface (UI) behaviors, which are associations of one or
more events with one or more responses. In some embodi-
ments, an event is a user input that an authored application
receives from a user of that authored application while the
application is being executed. For instance, a user’s clicking
onagraphical item (e.g., an icon) of the application is an event
that the application receives from the user. An event can also
be programmatic. For instance, when a soccer game applica-
tion is being executed, a graphical object representing a soc-
cer ball colliding with another graphical object representing
the goal may be programmatically defined as an event. A
response is an action that the application performs in response
to the received event. For instance, upon receiving the user’s
click on an icon, the application may enlarge the icon. Also,
the soccer game application may increment the value for the
score in response to an occurrence of the goal-scoring event
(i.e., the soccer ball hitting the goal).

In some embodiments, an application built by the author-
ing platform of some embodiments includes one or more
scenes. A scene in some embodiments is an interactive “page”
of'the application. The application can switch from one scene
to another based on the user’s interaction with the scene. Each
scene in some embodiments includes one or more entities
with which a user of the application can interact. Entities are
graphical objects displayed on a display of a machine on
which the application executes. For instance, entities may be
graphical icons on which the user can click. The application
displays the scenes in a certain order and each scene may have
a different set of entities.

The authoring platform of some embodiments allows a
user of the authoring platform to define events and responses
and to associate the events and responses as behaviors. The
authoring platform of some embodiments also allows the user
of the authoring platform to associate a behavior with an
entity of a scene of the authored application. The authored
application performs the response associated with the event
of'the behavior when the event occurs on the entity while the
authored application executes on a machine. For instance, the
user of the authoring application defines a response that
enlarges an entity. The user also defines an event that repre-
sents touching an entity with a finger of a user of an authored
application. The user associates the defined response with the

10

15

20

25

30

35

40

45

55

60

65

2

defined event and then defines the association of the eventand
response as a behavior. The user associates this behavior with
an entity of a scene of an interactive application that the user
is building using the authoring platform. When the user of the
application touches the entity with her finger, the application
performs the response by displaying the enlarged entity.

As mentioned above, the authoring platform of some
embodiments allows the user of the authoring platform to
associate an entity with one or more behaviors. Each behavior
can include one or more events. Each event in turn can be
associated with one or more responses. That is, when an event
occurs on an entity while an authored application executes,
the application may perform one or more responses. In some
cases, these responses may be in heterogeneous types.

The heterogeneous types of responses in some embodi-
ments include a script response, an animation response, a
complied code response, an audio response, etc. A script
response is a script (e.g., JavaScript) that the authored appli-
cation would perform in response to receiving an event that is
associated with the script response. An animation response is
an animation that the authored application would perform in
response to receiving an event that is associated with the
animation response. For instance, the application would ani-
mate a graphical icon glow in response to user’s clicking the
icon or move the graphical icon from one location of a scene
to another location of the scene. A compiled code response is
an executable piece of program code that the authored appli-
cation would invoke in response to receiving an event that is
associated with the complied code response. For instance, the
application would invoke a compiled C++ code to download
a file from the Internet in response to receiving a click on a
graphical icon. An audio response is an audio file that the
authored application would playback in response to receiving
an event that is associated with the audio response.

The authoring platform of some embodiments provides a
protocol to facilitate communications between heteroge-
neous types of responses while an authoring application that
performs these responses executes. In particular, the authored
application translates the input and output data of a response
into parameters that conform to this protocol such that output
data of one type of response can be used as the input data of
another type of response. For instance, the authored applica-
tion translates a new position in a scene, to which an anima-
tion response moves an icon, into parameters that conform to
the protocol. The authored application translates the param-
eters to input variables for a script response so that the script
response runs its script with the input variables.

The authoring platform of some embodiments provides a
tool for defining and editing behaviors. The user of the author-
ing platform uses this tool to define events and responses and
define behaviors by associating the events and responses. For
instance, the authoring platform provides a graphical user
interface (GUI) referred to as a behavior editor. The behavior
editor in some embodiments is for defining and editing a
behavior. The behavior editor in some embodiments includes
an events column, a responses column, and a script editing
area. In the events column, the behavior editor lists events of
the behavior that is being defined and/or edited by the behav-
ior editor. The behavior editor lists responses. When the user
of the authoring platform selects an event listed in the events
column, the responses column lists the responses that are
associated with the selected event. When the user of the
authoring platform selects a script response listed in the
responses column, the behavior editor displays the response’s
script content in the script editing area.

The authoring platform of some embodiments provides a
tool for visually associating an entity of a scene and a behav-

US 9,164,576 B2

3

ior. For instance, the authoring platform provides a GUI that
includes a scene preview area and a behaviors library. The
scene preview area displays a scene of an application being
built by the authoring platform. That is, scene preview area
displays the entities of the scene. The behaviors library dis-
plays a list of behaviors that are represented as graphical
objects. The tool in some embodiments allows the user of the
authoring platform to select and drag a behavior from the
behaviors library and to drop it onto an entity displayed in the
scene preview area. In this manner, the user can associate an
entity with a behavior visually.

The authoring platform of some embodiments provides a
tool for visually combining several animation responses for
an entity of a scene of an application being authored. For
instance, the authoring platform provides a GUI that includes
akey indices display area for displaying key-indexed graphs.
A key-indexed graph in some embodiments is displayed as a
line that horizontally expands the key indices display area.
One end of the key-indexed graph represents the beginning of
duration of the corresponding scene and the other end of the
key-indexed graph represents the end of the duration. When
the scene is played back, the scene will display its entities for
the duration represented by the length of the key-indexed
graph.

In some embodiments, the GUI allows the user of the
authoring platform to place key indices (e.g., keyframes) on
the key-indexed graph. A pair ofkey indices represents a start
and an end of an animation for an entity of a scene. For
instance, the first key index of a key index pair defines a first
location of the entity within the scene at the beginning of a
time period and the second key index of the key index pair
may define a second location of the entity within the scene at
the end of the time period. When the scene is played back for
the time period represented by the two key indices of the pair,
the entity moves from the first location at the beginning of the
time period to the second location at the end of the time
period. In some embodiments, the intermediate positions of
the icon being moved during the time period are interpolated
based on the first and the second positions. Thus, an anima-
tion response may be defined as a set of key indices placed
along a key-indexed graph.

Using the combining tool, the user of the authoring plat-
form can combine several animation responses in the key-
indexed graphs when the responses are associated with the
same event. As mentioned above, an animation response may
be represented as a set of key indices for one or more entities
of a scene. Combining several animation responses in the
key-indexed graphs therefore means combining the key indi-
ces of different responses in some embodiments. The tool in
some embodiments allows the user to combine responses in
the key indices display area by selecting and dragging several
behaviors from the behaviors library and dropping the
selected behaviors on the key indices display area. Once the
behaviors are dropped onto the key indices display area, the
key indices of the animation responses of the behaviors
appear on the key-indexed graphs.

Some embodiments provide a method for automatically
detecting boundaries of a transparent area within an image,
which serves as the scene preview area of the authoring plat-
form. In some cases, the manufacturer of a device provides
the user of the authoring platform with the image having a
transparent area. This transparent area in the image serves as
the scene preview area. That is, the entities of a scene will
appear in the transparent area within the provided image. The
user can tailor the scenes of the application being authored to
the provided image so that the scenes are displayed correctly
in the display area for the device.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, amanufacturer may change the shape and/or size
of the transparent area within the image before finalizing the
design for their device or when a new version of the device is
being developed. By allowing automatic detection of bound-
aries of the transparent area, the method of some embodi-
ments allows the user of the authoring platform to avoid
changing the scenes to keep up with the changes to the shape
and/or size of the transparent area of the image. The method
of some such embodiments first finds the center pixel of the
image and determines whether the center pixel supports
transparency. The method in some embodiments determines
that the center point supports transparency when the center
pixel has an alpha value that is below a certain threshold value
that is less than 1.0. In these embodiments, a pixel having an
alpha value that is less than the threshold value is qualified as
transparent. When the center pixel is determined to be trans-
parent, the method expands the boundaries of the transparent
area from the center pixel until the boundaries hit pixels that
do nothave alpha values or that have alpha values greater than
the threshold value. The method then uses the expanded
boundaries over which to place the entities.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi-
ments described in the Summary as well as other embodi-
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description and the Drawings is needed. Moreover,
the claimed subject matters are not to be limited by the illus-
trative details in the Summary, Detailed Description and the
Drawing, but rather are to be defined by the appended claims,
because the claimed subject matters can be embodied in other
specific forms without departing from the spirit of the subject
matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation, sev-
eral embodiments of the invention are set forth in the follow-
ing figures.

FIG. 1 conceptually illustrates a graphical user interface
(GUI) of the authoring platform of some embodiments.

FIG. 2 illustrates an example architecture of an authoring
platform that defines behaviors.

FIG. 3 illustrates example architecture of an application
built by an authoring platform of some embodiments.

FIG. 4 conceptually illustrates a process performed by
some embodiments to receive an event and execute responses
associated with the event.

FIG. 5 illustrates a scene of an application that is running
on a device with a display area.

FIG. 6 conceptually illustrates a GUI of an authoring plat-
form, which allows a user to graphically associate a behavior
with an entity of a scene of an application being built.

FIG. 7 conceptually illustrates a GUI of an authoring plat-
form, which allows a user to create and modify behaviors for
an application being built.

FIG. 8 conceptually illustrates a GUI of an authoring plat-
form.

FIG. 9 conceptually illustrates a GUI of an authoring plat-
form of some embodiments.

US 9,164,576 B2

5

FIG. 10 conceptually illustrates relationship between dit-
ferent instances of data of an application, which is built by an
authoring platform of some embodiments.

FIG. 11 illustrates example architecture of an application
built by an authoring platform of some embodiments.

FIG. 12 conceptually illustrates a process performed by
some embodiments to receive an event and execute responses
associated with the event.

FIG. 13 conceptually illustrates a process that some
embodiments perform to identify behaviors that have match-
ing event and have all conditions (if any) met.

FIG. 14 conceptually illustrates a behavior editor of the
authoring platform of some embodiments.

FIG. 15 illustrates a behavior editor of some embodiments.

FIG. 16 conceptually illustrates a GUI of the authoring
platform of some embodiments.

FIG. 17 conceptually illustrates a device that runs the
application.

FIG. 18 conceptually illustrates a GUI of the authoring
platform of some embodiments.

FIG. 19 conceptually illustrates a GUI of the authoring
platform of some embodiments.

FIG. 20 conceptually illustrates a process that some
embodiments perform to manage a key indices display area.

FIG. 21 illustrates merging two different animation
responses of two different behaviors in the sub-key-indexed
graphs of a GUI in some embodiments.

FIG. 22 conceptually illustrates a process that some
embodiments performs to detect boundaries of a transparent
area within an image.

FIG. 23 conceptually illustrates finding boundaries of a
transparent area within an image.

FIG. 24 illustrates the software architecture of an authoring
platform for building applications.

FIG. 25 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it will be clear and
apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Some embodiments of the invention provide an authoring
platform for authoring interactive software applications by
defining user interface (UI) behaviors, which are associations
of one or more events with one or more responses. In some
embodiments, an event is a user input that an authored appli-
cation receives from a user of that authored application while
the application is being executed. For instance, a user’s click-
ing on a graphical item (e.g., an icon) of the application is an
event that the application receives from the user. An event can
also be programmatic. For instance, when a soccer game
application is being executed, a graphical object representing
a soccer ball colliding with another graphical object repre-
senting the goal may be programmatically defined as an
event. A response is an action that the application performs in
response to the received event. For instance, upon receiving
the user’s click, the application may enlarge the icon. Also,
the soccer game application may increment the value for the
score in response to an occurrence of the goal-scoring event
(i.e., the soccer ball hitting the goal).

FIG. 1 conceptually illustrates a graphical user interface
(GUI) 100 of the authoring platform of some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

6

Specifically, FIG. 1 illustrates several different GUI tools that
the authoring platform provides. Using the tools, a user of the
authoring platform can build interactive applications to run
on devices. As shown, the GUI 100 includes a scenes pane
105, a scene preview area 110, a behaviors library 120, a key
indices display area 125, and a behavior editor 130.

The scene preview area 110 displays a scene of the appli-
cation being built. In some embodiments, an application built
by the authoring platform of some embodiments includes one
or more scenes. A scene in some embodiments is an interac-
tive “page” of the application. That is, each scene includes
one or more entities with which a user of the application can
interact. Also, the user can move from one scene to another.
Entities are graphical objects of a scene displayed on a display
area of a device on which the application executes.

In some embodiments, the GUI 100 allows a user to create
or modify the scene by adding or deleting entities (e.g., a
graphical icon) to and from the scene preview area 110. For
instance, the scene preview area 110 shows icons 111, 112,
and 113, which are added to the scene preview area 110 by
user by dragging and dropping these icons. In some embodi-
ments, the scene preview area 110 also allows the user of the
authoring platform to simulate a run of the scene of the
application. That is, the user can execute the scene of the
application in the scene preview area 110.

In some embodiments, the scene preview area 110 includes
acanvas 115. The canvas 110 in some embodiments is an area
that has the size and the shape of the display area of a device
on which the scenes of the application will be displayed. As
will be described below in Section IV, the authoring platform
of some embodiments automatically detects boundaries of
the transparent area within an image that is used as a canvas.

The scenes pane 105 in some embodiments is an area of the
GUI 100 that lists the scenes of an application that is being
authored by the authoring platform. The scenes pane 105 lists
a different set of scenes whenever a scene is added to or
deleted from the application. The scenes pane 105 lists the
scenes by the scenes’ names in some embodiments. For
instance, the scenes pane 105 displays four scene scenes 1-4
as shown. In some embodiments, when the user selects a
scene in the scenes pane 105, the GUI 100 displays the scene
in the scene display area 110.

The behaviors library 120 lists behaviors by the behaviors’
names. For instance, the behaviors library 120 lists five
behaviors 1-5 as shown. The GUI 100 of some embodiments
allows the user of the authoring platform to graphically asso-
ciate a behavior listed in the behaviors library 120 with an
entity displayed in the scene preview area 115 by, for
example, dragging the behavior from the behaviors library
120 and dropping onto the entity. Graphically associating a
behavior with an entity of a scene will be further described
below by reference to FIG. 6.

The key indices display area 125 displays a key-indexed
graph for each of the entities of a scene that is being edited in
the scene preview area 110. For instance, the key indices
display area 125 displays three key-indexed graphs 126-128
for the icons 111-113, respectively. A key-indexed graph can
be expanded to sub-key-indexed graphs for properties of the
corresponding entity. Key-indexed graphs and sub-key-in-
dexed graphs for entities will be described further below by
reference to FIG. 8. In some embodiments, the GUI 100
allows the user of the authoring platform to animate proper-
ties of an entity by adding and manipulating key indices on
the key-indexed graph and sub-key-indexed graphs for the
entity. Also, different responses of different behaviors may be

US 9,164,576 B2

7

merged in the key indices display area 125. Key indices and
merging responses will be described further below by refer-
ence to FIGS. 8 and 9.

The behavior editor 130 allows a user of the authoring
platform to create and modify behaviors for an application
being built by the authoring platform. As shown, the behavior
editor 130 in some embodiments includes two columns 131
and 132 for listing events and responses, respectively. The
events column 131 lists one or more events of the behavior
being edited. The responses column 132 lists responses that
are associated with events listed in the events column 132. In
some embodiments, a response in the response column is
displayed in an expandable row. For instance, a response row
for the response 133 is expanded to include a script editing
area 134 in which the user can modify or create scripts.
Further details about a behavior editor will be described
below by reference to FIGS. 7, 14, and 15.

As shown, the GUI 100 includes several different parts.
However, not all of these different parts need to appear at a
time for the GUI 100 to be functional. That is, one or more
subsets of the parts of the GUI 100 may appear at a given time.
Moreover, not all of these different parts need to appear in the
same window. Each of the parts may have its own window that
can be manipulated by the user separately from the GUI 100.
Also, one or more subsets of the parts may appear in one
window. For instance, the behaviors library 120 and the
behavior editor 130 may appear in the same window that is
not the window of the GUI 100.

FIG. 2 illustrates an example architecture of an authoring
platform 200 that defines behaviors. The authoring platform
allows a user to build an application using behaviors. A built
application will perform the responses defined in the behav-
iors when the application receives one or more events that are
defined to be associated with the behaviors. An example of
such responses may be displaying an animation in response to
receiving an event such as a user’s click on a GUI item. The
application might be an interactive game, an office applica-
tion, etc. In some embodiments, the authoring platform is
used to develop applications for specific devices (e.g., spe-
cific smartphones, tablets, laptops or desktops, etc.) or spe-
cific operating systems (which may run on specific devices
such as smartphones, tablets, laptops, desktops, etc.). As
shown, the authoring platform of some embodiments
includes a user interface 205, an event definer 210, a response
definer 215, an events repository 220, a responses repository
225, an event-response associator 230, a behaviors repository
235, an entity-behavior associator 240, an entities repository
245, a scenes repository 250, and a media library 255.

An application built by the authoring platform of some
embodiments includes one or more scenes. A scene in some
embodiments includes one or more entities with which a user
of'the application can interact. Entities in some embodiments
are graphical objects displayed on a display of a machine on
which the application executes. For instance, entities may be
graphical icons with which the user of the application can
interact by e.g., clicking on them. The entities may represent
different media pieces including icons, textual information,
movies, audio clips, etc. The application displays the scenes
in a certain order and each scene may have a different set of
entities. When an event defined in a behavior associated with
an entity occurs with respect to the entity, the authored appli-
cation that includes the entity runs the response(s) associated
with the event in response to the occurrence of the event.

The scenes repository 250, which is a cache or other per-
sistent storage medium in some embodiments, stores scenes
that may become part of the authored applications. The user
of the authoring platform (e.g., an application developer)

10

15

20

25

30

35

40

45

50

55

60

65

8

creates scenes in which one or more graphical objects are
displayed. The graphical objects of some embodiments may
include various media pieces such as icons, textual informa-
tion, movies, audio clips, etc. Within an application devel-
oped using the authoring platform 200, these might appear as
selectable items or just displayed items. As mentioned above,
these graphical objects of a scene are also referred to as
entities.

The media library 255 stores the media pieces. These
media pieces are created by the application developers or
brought into the media library 255 by the application devel-
opers in some embodiments. The media pieces may be
brought into the scenes and become part of the scenes. Once
the media pieces are brought into the scenes, they are repre-
sented by the entities related to the scenes. The entities reposi-
tory 245 stores information regarding the media pieces that
the entities represent. In some cases, an entity is stored as a
data structure that has a reference to one or more media pieces
that are represented by the entity. Also, this data structure in
some embodiments has a reference to the behaviors that are
associated with the entity as will be described below.

The authoring platform 200 provides the user with the user
interface 205 through which the user can input data for
authoring the application. The user can specify events and
responses and associate the events and responses through the
user interface. The user interface feeds the received input data
to other modules of the authoring platform 200. For instance,
the user interface 205 sends the received data to the event
definer 210 and the response definer 215.

The event definer 210 defines events based on the received
data. For instance, the event definer defines an event called
“goalScored” which encapsulates one graphical object rep-
resenting a soccer ball colliding with another graphical object
representing a goal. In some embodiments, the event definer
creates events by augmenting pre-defined events with condi-
tions. Examples of pre-defined events include a mouse-down
and a mouse-up, which represent user’s holding down a
mouse button and releasing mouse button, respectively. The
conditions will provide additional constraints to meet in order
to trigger responses that will be associated with the pre-
defined events. The event definer 210 stores and retrieves the
defined or modified events in the events repository 220, which
is a cache or other persistent storage medium in some embodi-
ments.

The response definer 215 defines different types of
responses based on the received data. The types of responses
in some embodiments include a script response, an animation
response, a complied code response, an audio response, etc. A
script response is a script (e.g., JavaScript) that the authored
application runs in response to receiving an event that is
associated with the script response. An animation response is
an animation that the authored application runs in response to
an event that is associated with the animation response. For
instance, an animation response will cause a graphical icon
glow in response to user’s clicking the icon. A compiled code
response is an executable piece of program code that the
authored application would invoke in response to receiving an
event that is associated with the complied code response. For
instance, the application invokes a compiled code (e.g., C++,
CH#, etc.) to download a file from the Internet in response to
receiving a click on a graphical icon. An audio response is an
audio file that the authored application would playback in
response to receiving an event that is associated with the
audio response.

In some embodiments, the response definer 215 defines
these different types of responses in such a way that the
responses of different types can communicate with each

US 9,164,576 B2

9

other. That is, for instance, the response definer 215 utilizes a
protocol (or a format) to which the input and output data of
each type of response conform so that the output of one type
of response (e.g., an animation response) can be used as the
input to another type of response (e.g., a script response). In
other words, the response definer 215 describes the input and
output data of different types of responses in a unified proto-
col or format so that the responses of different types can use
each other’s output data as the input data. For example, the
response definer 215 translates the coordinates of an icon that
is to be animated by an animation response from one format
into a unified format. These coordinates described in the
unified format are fed into a script response, which will trans-
late the coordinates into another format that the script of the
script response can use. Such unified protocol is referred to as
a conformance protocol or a conformance format throughout
this Specification.

In some embodiments, the conformance protocol is a for-
mat for one particular type of response. That is, the input and
output of this particular type of response does not have to be
translated while other types of responses have to have their
input and output translated into the format for the particular
type of response.

In some embodiments, the response definer 215 also
defines response handlers for different types of responses.
These handlers become part of authored applications along
with the corresponding responses. When an authored appli-
cation is running, these response handlers will parameterize
the inputs and outputs of the responses using the conformance
protocol so that responses of different types can communicate
with each other. In this manner, the authored application can
perform responses of different types that are associated with
an event. For instance, an event is associated with an anima-
tionresponse and a script response. The animation response is
defined to move a graphical icon to another position in
response to an event. A handler for the animation response
extracts the new position of the icon and parameterizes it into
two values indicating the x and y coordinates of the center of
the icon using the conformance protocol. A handler for the
script response receives the two values and translates them
into some other values of different types, which may be
understood by the script response. The script response runs
with the values translated from the values written in the con-
formance protocol as inputs. Further details about response
handlers at runtime will be described below by reference to
FIG. 3. The response definer 215 stores defined responses and
response handlers in the responses repository 225, which is
cache or other persistent storage mediums in some embodi-
ments.

The event-response associator 230 associates an event with
one or more responses based on the received data. That is, the
event-response associator 230 defines behaviors according to
the user’s specification. In some embodiments, a behavior
may include two or more events, each of which may be
associated with responses. An event may be associated with
responses of different types. For instance, a mouse-down
event may be associated with an animation response and a
script response. The event-response associator 230 stores the
defined behaviors in the behaviors repository 235, which is a
cache or other persistent storage medium in some embodi-
ments.

The entity-behavior associator 240 associates an entity
with one or more behaviors based on the received data. The
entity-behavior associator 240 of some embodiments stores
the associations of behaviors and entities in the entities
repository 245.

30

40

45

50

55

10

FIG. 3 illustrates example architecture of an application
300 built by the authoring platform 200 described above by
reference to FIG. 2. Specifically, this figure illustrates that the
application 300 performs several responses of different types
in response to receiving an event from a user of the applica-
tion. As shown, the built application 300 includes a user
interface 305, a behavior execution engine 315, a scenes
repository 320, an entities repository 325, a behaviors reposi-
tory 330. The application 300 also includes response handlers
335-345.

The user interface 305 receives user inputs. Specifically,
the user interface in some embodiments encapsulates the
user’s interaction with the application as event formats. For
instance, when the user touches a certain part of a display
device that displays a scene of the application, the user inter-
face 305 detects the touch and generates a corresponding
event (e.g., a touchdown event). In some embodiments, the
user interface 305 does not detect and translate the user’s
interactions. Instead, the user interface 305 receives encap-
sulation of user’s interaction from the operating system ofthe
device on which the application is being executed. In these
embodiments, the user interface 305 translates the encapsu-
lation into an event format that the behavior execution engine
315 can understand. The user interface 305 sends events to the
behavior execution engine 315. An event in some embodi-
ments is a piece of data that includes information regarding
the type of event and location of the user interaction on the
current scene, etc.

The scenes repository 320 stores all scenes that the appli-
cation 300 includes. In some embodiments, the scenes are
stored as data structures that have references to entities that
each scene includes. The entities repository 325 stores all
entities that all scenes of the application include. The behav-
iors repository 330 stores all behaviors (i.e., associations of
events and responses) that are associated with entities of the
application. The repositories 320, 325, and 330 each may be
a cache or other persistent storage medium in some embodi-
ments.

The behaviors execution engine 315 selects one or more
behaviors based on the received event and notifies response
handlers according to the responses defined in the selected
behavior(s). Upon receiving an event, the behavior execution
engine 315 first goes through a list of entities of the current
scene to find out on which one or more entities this received
event has occurred. For instance, the behavior execution
engine 315 parses the received event and identifies the loca-
tion within the current scene where the user has touched. The
behavior execution engine 315 finds one or more entities that
are placed at the identified location in the current scene. In
some embodiments, an entity has properties, which include
dimensions, scale, location of the entity within a scene to
which the entity belongs, etc. For each of the entities found,
the behaviors execution engine 315 identifies one or more
behaviors that are associated with the entity. Among these
identified behaviors, the behaviors execution engine 315 then
finds the behaviors that match the event. That is, the behaviors
execution engine 315 finds those identified behaviors that
include the received event. The behaviors execution engine
315 then identifies all responses that are associated with the
event for each of the behaviors found.

For each of the identified responses of a behavior, the
behaviors execution engine 315 notifies a response handler
for the response. The behaviors execution engine 315 in some
embodiments parameterizes the received event and sends the
resulting parameters to the response handlers. In some
embodiments, these parameters conform to the conformance
protocol which the behaviors execution engine 315 and the

US 9,164,576 B2

11

response handlers use to communicate with each other. In
some embodiments, the behaviors execution engine 315
receives parameters from response handlers. In some cases,
the behaviors execution engine 315 translates this parameter
format into an event format and finds behaviors that match the
event. In other cases, the behaviors execution engine 315
passes the parameters to another response handler which
executes the next response to be performed by the application
300.

The response handlers 335-345 execute responses. As
described above, responses may be of different types. Insome
embodiments, each response handler can handle responses of
different types. In other embodiments, each response handler
is specific to a particular response and is able to handle only
the particular response. A response handler in some embodi-
ments translates the parameters received from the behaviors
execution engine 315 into a format that the type of response
that the handler is executing understands. For instance, a
response handler for script responses translates parameters in
the conformance protocol into values that a script response
can understand. The response handler runs the script of the
response, which takes the translated values as inputs.

In some embodiments, a response handler translates the
result or output of the executed response into parameters in
the conformance protocol. The response handler may pass the
parameters back to the behaviors execution engine 315 or
send the parameters to another response handler. The
response handler that received the parameters then translates
the parameters into inputs to the responses that this handler
handles and then executes the responses. For instance, the
response handler 335 handles responses of type A (e.g., an
animation response). Parameters 365 that the response han-
dler 335 receives do not include a next response to be
executed. The response handler 335 translates the output of
running the response 1 of type A into parameters 370 in the
conformance protocol and sends them back to the behavior’s
execution engine 315. On the other hand, the parameters 375
includes a chain of responses to be executed in response to the
received event. The response handler 340 translates the
parameters 375 into inputs for response 2 of type B (e.g., a
script response) and executes the response 2. The response
handler 340 then translates the output of the response 2 into
the parameters 380 in the conformance protocol. Since the
response handler 340 knows the next response in the chain of
responses to be executed, the response handler 340 sends the
parameters 380 to the response handler 345 of type C.

Some embodiments execute responses in parallel in some
cases. For instance, the response handler 335 and 340 may
receive parameters 365 and 375 independently from the
behavior execution engine 315 and execute the responses 1
and 2 in parallel. In other cases, some embodiments execute
responses sequentially. For instance, as described above, the
response handlers 340 and 345 execute the responses 2 and 3
sequentially when they receive the parameters 365 and 375,
which are defined as being sequential in a chain of responses
to be executed.

An example operation of the application 300 will now be
described by reference to FIG. 4. FIG. 4 conceptually illus-
trates a process 400 performed by some embodiments to
receive an event and execute responses associated with the
event. In some embodiments, the application 300 performs
the process 400. The process 400 begins by receiving (at 405)
an event. For instance, the application 300 receives an event
310. The event 310 in this example indicates that the user has
touched a graphical icon placed in a certain location of the
current scene that is being displayed for the user.

10

30

40

45

12

Next, the process 400 finds (at 410) one or more entities to
which the received event applies. The process uses informa-
tion included in the event to identify the entities of the current
scene to which the event applies. For instance, the application
300 goes through a list of entities of the current scene and
finds out to which entities the event 310 has occurred. In this
example, the application 300 identifies the graphical icon as
the entity on which the event 310 has occurred.

The process 400 then finds (at 415) one or more behaviors
that include the received event for each of the entities found at
410. The process in some embodiments first identifies all
behaviors that are associated with an identified entity. As
described above, entities of the application in some embodi-
ments includes references to the behaviors that are associated
with the entity. The process uses the references to identify all
behaviors. The process then finds those identified behaviors
that include the received event. In this manner, the process
finds only the behaviors that are associated with an identified
entity and that include the received event. In FIG. 3, the
application 300 finds one behavior (not shown) that is asso-
ciated with the graphical icon and that includes the event 310.

Next, the process identifies (at 420) all responses that are
associated with the received event. The process identifies the
responses from the behaviors found at 415. For instance, the
application 300 identifies two responses, i.e., responses 2 and
3, that are associated with the one behavior that is associated
with the graphical icon and includes the event 310.

The process then executes (at 425) all responses identified
at 420. These responses include all responses that are associ-
ated with the received event in all behaviors. These behaviors
are in turn associated with all entities to which the received
event applies. The process in some embodiments may execute
responses that are independent of each other in parallel. Also,
the process may sequentially execute responses that are not
independent of each other (e.g., chained responses).

In order to execute these identified responses, the process
translates the received event into a format that a response type
understands. For instance, the application 300 converts the
event 310 into parameters in the conformance protocol and
then translates the parameters to inputs to the response 2,
which is of response type B. The application executes the
response 2 using the inputs and then translates the output of
the response 2 into the parameters 380 in the conformance
protocol. The application 300 then translates the parameters
380 into inputs that the response 3 of response type 3 would
understand. The application 300 then executes the response 3
with the inputs.

FIG. 5 illustrates a scene of an application that is running
on a device with a display area 520. Specifically, this figure
illustrates in three different stages 505-515 that the applica-
tion performs several responses in response to receiving sev-
eral events. The application includes a scene that has six icons
including an icon 525. The application includes behaviors 1
and 2 that are associated with the icon 525.

The behavior 1 is an association of one event and one
animation response. The event in the behavior 1 is a touch-
down, which represents user’s placing her finger on the dis-
play area 520. The response in the behavior 1 is an animation
response called “glow” which, when executed, makes the
entity associated with the behavior 1 glow. The behavior 2 is
also an association of one event and one animation response.
The event in the behavior 2 is a touchup, which represents
user’s lifting her finger from the display area 520. The
response in the behavior 2 is an animation response called
“bulge” which, when executed, enlarges the entity associated
with the behavior 2.

US 9,164,576 B2

13

The first stage 505 shows the display area 520 displaying
the icon 525 along with five other icons of the current scene.
At the second stage 510, the user touches the icon 525 with a
finger. Thus, the application has received a touchdown event.
With the received event, which includes information about
the location of the display area 520, the application identifies
that the icon 525 is the entity on which the touchdown event
has occurred. The application then finds out that the behaviors
1 and 2 are the only two behaviors that are associated with the
icon 525. The application goes through these two behaviors’
events and determines that only the behavior 1 has the match-
ing event, a touchdown event. As a result, the application
executes only the glow response of the behavior 1. As indi-
cated in the stage 510, the icon 525 is glowing.

At the third stage 515, the user has lifted her finger. As the
user lifts her finger up from the display area 520, the appli-
cation receives the touchup event. The application again iden-
tifies that the icon 505 is the entity on which the touchup event
has occurred. The application then finds out that the behaviors
1 and 2 are the two behaviors that are associated with the icon
525. The application goes through the two behaviors’ events
and determines that only the behavior 2 has the matching
event, a touchup event. The application thus executes only the
bulge response of the behavior 2. As shown at the third stage
515, the icon 515 is enlarged as the finger is lifted up from the
display area 520.

FIG. 6 conceptually illustrates a graphical user interface
(GUI) 600 of an authoring platform, which allows a user to
graphically associate a behavior with an entity of a scene ofan
application being built. Specifically, this figures illustrates in
two different stages 605 and 610 that behavior 2 is getting
associated with an icon 625. As shown, the GUI 600 includes
a scene preview area 615 and a behaviors library 620.

The scene preview area 615 displays a scene of the appli-
cation being built. The user can create or modify the scene by
adding or deleting entities (e.g., a graphical icon) to and from
the scene preview area 615. In some embodiments, the scene
preview area 615 also allows the user to simulate running the
scene of the application. That is, the user can playback the
scene in the scene preview area 615.

The behaviors library 620 displays a list of behaviors that
are represented as graphical objects. These behaviors can be
associated with entities displayed in the scene preview area
615. In some embodiments, the behaviors library 620 dis-
plays predefined behaviors. The behaviors library 620 also
allows the user of the authoring platform to add new behav-
iors. In some embodiments, the GUI 600 allows the user of
the authoring platform to associate an entity and a behavior by
dragging a graphical object representing the behavior and
dropping it onto an entity displayed in the scene preview area
615.

At the first stage 605, the user of the authoring platform
selects behavior 2. The user can select a behavior displayed in
the behaviors library. This selection may involve clicking a
mouse button or tapping a touchscreen to select a graphical
object representing a behavior, selecting an option through
keyboard input, etc.

Atthe second stage 610, the user of the authoring platform
drags behavior 2 over the icon 625. In some embodiments, as
the user moves the cursor while a behavior is selected, the
GUI shows the graphical object (e.g., a gear-looking icon)
along the path of the cursor in order to provide a visual cue.
When the graphical object hovers near an icon, the GUI may
provide another visual cue (e.g., a different background color
for the icon) to indicate that the behavior represented by the
graphical object will be associated with the icon once the
graphical object is dropped there. The user drops the graphi-

10

15

20

25

30

35

40

45

50

55

60

65

14

cal object representing the behavior 2 onto the icon 625. As a
result, the icon 625 is associated with the behavior 2. That is,
when an authored application that includes this scene is
executed, the application will run the response defined in the
behavior 2 upon receiving an event that is associated with the
response in the behavior 2 and the icon 625.

FIG. 7 conceptually illustrates the GUI 600 of the author-
ing platform, which allows a user to create and modify behav-
iors for an application being built. Specifically, this figure
illustrates in two different stages 705 and 710 launching a
behavior editor 725.

At the first stage 705, the user of the authoring platform
selects behavior 1 to launch a behavior editor. The GUI 600 in
some embodiments displays a behavior editor when the user
selects a behavior displayed in the behaviors library 620. This
selection may involve clicking a mouse button or tapping a
touchscreen to select a graphical object representing a behav-
ior, selecting an option through keyboard input, etc. For
instance, the user may double-click on a graphical object
representing a behavior to launch a behavior editor.

Atthe second stage 710, the GUI 600 displays the behavior
editor 725. As shown, the behavior editor 725 in some
embodiments includes two columns for showing events and
responses. The events column lists one or more events that are
defined in the behavior being edited. The responses column
lists responses associated with events listed in the events
column. In some embodiments, each response in the response
column is displayed in an expandable row. For instance, a
response row for the script response 730 is expanded to
include the script editing area in which the user can modify or
create scripts. In some embodiments, the behavior editor
occupies a portion or the entirety of the GUI 600. In other
embodiments, the behavior editor may be a separate window
that can be separately manipulated from the GUI 600.

FIG. 8 conceptually illustrates a GUI 800 of an authoring
platform. Specifically, this figure illustrates in two different
stages 805 and 810 that a key-indexed graph for an entity ofa
scene can be expanded to sub-key-indexed graphs for the
properties of the entity. As shown, the GUI 800 includes a
scene preview area 815 and the key indices display area 820.

The scene preview area 815 is similar to the scene preview
area 615 described above by reference to FIG. 6. The key
indices display area 820 displays a key-indexed graph for
each of'the entities that belong to a scene that is being edited
in the authoring platform. In some embodiments, the GUI 800
allows the user of the authoring platform to place handles for
key indices (e.g., keyframes) on the key-indexed graph. A key
index pair represents a start or an end of an animation for an
entity (e.g., an icon) of a scene. For instance, the first key
index of a key index pair defines a first location of the entity
within the scene at the beginning of a time period and the
second key index of the key index pair may define a second
location of the entity within the scene at the end of the time
period. When the scene is played back for the time period
represented by the two key indices of the pair, the entity
moves from the first location at the beginning of the time
period to the second location at the end of the time period. In
some embodiments, the intermediate positions of the icon
being moved during the time period are interpolated based on
the first and the second positions. Thus, an animation may be
defined as a set of key indices placed along a key-indexed
graph. In this manner, key indices in some embodiments are
used like the way keyframes are used for a video file (e.g., for
defining the starting and ending points of any smooth transi-
tion.)

At the first stage 805, the scene preview area 815 displays
three icons of a scene that is being edited. The key indices

US 9,164,576 B2

15

display area 820 displays three key-indexed graphs of the
three icons 1-3. The key-indexed graphs for the icons 1 and 2
eachhave akey index depicted as ablack dot in the figure. The
hollow dots at the end of key-indexed graphs represent the
end ofkey-indexed graph for the three icons. In some embodi-
ments, the user selects the key-indexed graph for the icon1 to
expand this key-indexed graph into sub-key-indexed graphs.
This selection may involve clicking a mouse button or tapping
a touchscreen to select the key-indexed graph, selecting an
option through keyboard input, etc. For instance, the user may
click on the black triangle to cause the key indices display
area 820 to display sub-key-indexed graphs for the properties
of the icon 1. The properties of an entity in some embodi-
ments include a position, a scale, a rotation, a color, etc. to
name a few.

At the second stage 810, the GUI has expanded the key-
indexed graph for the icon 1 into sub-key-indexed graphs for
some of the properties of the icon 1. Not all of sub-key-
indexed graphs for all the properties are depicted in this figure
for simplicity of description. By providing a sub-key-indexed
graph for each of the properties of an entity, the GUI 800
allows the user to control each property of the entity by
adding and editing key indices to the sub-key-indexed graph.
For instance, the user can have the color of an entity to change
gradually by introducing a key index in the sub-key-indexed
graph for the color property of the entity.

FIG. 9 conceptually illustrates a GUI 900 of an authoring
platform of some embodiments. Specifically, this figure illus-
trates in four different stages 905-920 that two behaviors
including animation responses can be combined in the key-
indexed graphs. As shown, the GUI 900 includes a scene
preview area 925, a behaviors library 930, and a key indices
display area 935. The scene preview area 925 is similar to the
scene preview area 615 described above by reference to FIG.
6. The behaviors library 930 is similar to the behaviors library
620 described above by reference to FIG. 6. The key indices
display area 935 is similar to the key indices display area 820
described above by reference to FIG. 8.

The authoring platform of some embodiments allows for
combining two animation responses in the key-indexed
graphs when the responses are associated with the same
event. As described above, an animation response may be
represented as a set of key indices for one or more entities of
a scene. Combining several animation responses in the key-
indexed graphs therefore means combining the key indices of
different responses in some embodiments. The GUI 800
allows the user to combine responses in the key-indexed
graphs by dragging a behavior from the behaviors library and
dropping the behavior on the key indices display area near the
key-indexed graphs of another response of another behavior.

When the response that is being dropped does not have the
same triggering event as the response that is being shown in
the key indices display area, the GUI 900 may prompt a
message indicating that the response that is being dropped
may not be combined. Many other combinations of key indi-
ces may occur and different embodiments treat these combi-
nations differently. For instance, when a first key index of a
first response overlaps with an existing second key index of a
second response, the authoring platform of different embodi-
ments may (1) keep the second key index only, (2) keep the
first key index only, or (3) composite the first and the second
key indices (e.g., by taking a mean of the values represented
by the two key indices). When different key indices of differ-
ent responses fall in the same key-indexed graph, the author-
ing platform of different embodiments may (1) keep the exist-
ing key indices only, (2) keep the key indices of the response
being dropped, or (3) keep all of the key indices.

10

15

20

25

30

35

40

45

50

55

60

65

16

At the first stage 905, the key indices display area 935 is
displaying sub-key-indexed graphs for the properties of the
icon 1. Particularly, the sub-key-indexed graphs are showing
ananimation response of a behavior that is associated with the
icon 1. The icon 1 is associated with behavior 1, which
includes an animation response. This animation response
adjusts the position property of the entity with which the
behavior 1 is associated. As shown, the sub-key-indexed
graph for the position property of the icon 1 has a key index
around the middle of the time period that the animation
response spans. When the scene receives an event that is
associated with this animation response of behavior 1, the
icon 1 will move to the position specified by the key index in
response to receiving the event.

At the second stage 910, the user of the authoring platform
selects behavior 4. This selection may involve clicking a
mouse button or tapping a touchscreen to select a graphical
object representing a behavior, selecting an option through
keyboard input, etc. The behavior 4 includes the same event as
the event that the response of behavior 1 is associated with.
The behavior 4 also has an animation response that is asso-
ciated with that event. This animation response adjusts the
scale property of the entity with which the behavior 4 is
associated.

At the third stage 915, the user drags behavior 4 and drops
onto the key indices display area 935 which is currently
showing the animation response of the behavior 1. The fourth
stage 920 shows that a key index has appeared on the sub-
key-indexed graph for the scale property of the icon 1 as a
result of dropping behavior 4 onto the key indices display area
935.

FIG. 9 illustrates merging responses in the key-indexed
graphs by dropping behaviors onto the key indices display
area near sub-key-indexed graphs for a particular entity.
However, the key indices display area does not have to be
showing sub-key-indexed graphs for merging to happen.
Also, the authoring platform of some embodiment allows for
merging responses in different ways instead of or in conjunc-
tion with dropping behavior onto the key indices display area.
For instance, the authoring platform of some embodiments
allows the user to merge responses by dropping behaviors
onto an entity displayed in the scene preview area.

Several detailed embodiments of the invention are
described in the sections below. Section I describes the con-
formance protocol and architecture of an authored applica-
tion of some embodiments. Section II describes GUI tools of
the authoring platform of some embodiments, including a
behavior editor. Section III describes merging responses in
the key indices display area of some embodiments. Section
IV then describes automatic detection of boundaries of trans-
parent area within an image. Next, Section V describes archi-
tecture of the authoring platform of some embodiments.
Finally, Section VI describes an electronic system that imple-
ments some embodiments of the invention.

1. Conformance Protocol

A. Data Relationship

The application authored by the authoring platform of
some embodiments includes one or more scenes. As
described above, a scene includes one or more entities, which
are graphical objects with which a user of the application can
interact. A scene has spatial properties as well as temporal
properties. That is, a scene has a border in which to hold the
entities and has duration for displaying the scene. The appli-
cation displays a scene on a display device for a machine on
which the application is running. The application processes

US 9,164,576 B2

17

the user’s interactions with the entities of the scene, which
may involve displaying another scene that the application
includes.

FIG. 10 conceptually illustrates relationship between dit-
ferent instances of data of an application 1000, which is built
by an authoring platform of some embodiments. Specifically,
this figure illustrates that the entities that the application
includes are associated with behaviors. The application there-
fore runs responses when the application receives events that
are associated with the responses.

FIG. 10 illustrates a scene 1005 that the application has.
Other scenes that the application includes are not depicted for
simplicity of description. The scene 1005 includes entities
610-625. An entity also has spatial properties and temporal
properties. Spatial properties of an entity include a scale,
rotation, color, position, opacity, three dimensional coordi-
nates, etc. Temporal properties of an entity include duration
for displaying the entity.

Entities of a scene in some embodiments form a hierarchy
such as a tree-like structure. As shown, the scene 1005 has a
root entity 1010, which has two sub-entities 1015 and 1020.
The entity 1020 has two sub-entities 1025 and 1030. An entity
in some embodiments appears behind (or, is a layer behind)
its sub-entities when the scene is displayed. In some cases, an
entity may spatially enclose its sub-entities. The entities 1015
and 1020 are peers. So are the entities 1025 and 1030. Peer
entities in some embodiments are entities that are not spa-
tially enclosed by each other. The entities in some embodi-
ments dynamically form a hierarchy. That is, the hierarchy
may be changed as the entities may appear or disappear from
the scene while the application is running.

As described above, an entity of a scene can be associated
with one or more behaviors. The association of behaviors and
events are made during the application was being built by an
authoring platform of some embodiments. Each behavior
includes or is associated with an event. As described above, a
behavior in some embodiments is a data structure that has
references to events and responses that are associated with the
events. Each event of a behavior is associated with one or
more responses. As shown, the entity 1015 is associated with
behaviors 1035. A behavior 1040 is associated with events
1045. An event 1050 is associated with responses 1055. The
responses 1055 conceptually form a chain to indicate that the
responses 1055 are performed in series when the event 1050
occurs on the entity 1015. Moreover, as described above,
when an event of a behavior is associated with responses that
are independent of each other (e.g., not in a chain), these
responses are performed in parallel when such event occurs.

B. Authored Application Architecture

FIG. 11 illustrates example architecture of an application
1100 built by an authoring platform of some embodiments.
Specifically, this figure illustrates that the application 1100
performs several responses of different types in response to
receiving an event from a user of the application. As shown,
the built application 1100 includes a user interface 1105, an
event detector 1110, a behavior execution engine 1120, an
events repository 1150, a scenes repository 1152, an entities
repository 1155, a behaviors repository 1160, and a responses
repository 1162. The application 1100 also includes response
handlers 1175, 1195, and 1196.

The user interface 1105 receives user inputs. Specifically,
the user interface in some embodiments encapsulates the
user’s interaction with the application 1100. For instance,
when user touches a certain part of a display device that
displays a scene of the application, the user interface 1105
detects the touch and generates data indicating the touch. In
some embodiments, the user interface 1105 does not detect

10

15

20

25

30

40

45

55

60

65

18

and translate the user’s interactions. Instead, the user inter-
face 1105 receives encapsulation of user’s interaction from
the operating system of the device on which the application
1100 is being executed. The user interface 1105 sends the
encapsulation of the user’s interaction to the event detector
1110.

The event detector 1110 receives the encapsulation of the
user interaction from the user interface 1105 and translates it
into an event format that the behavior execution engine 1120
can understand. The event detector 1110 receives other data
from other components (not shown) of the application 1100
and determines whether these data can constitute an event.
For instance, when an entity disappears from the current
scene being displayed, the event detector 1110 detects the
disappearance as form of data and determines whether this
disappearance should be translated into an event to send to the
behavior’s execution engine 1120. In some embodiments, the
event detector 1110 looks up the event definitions stored in
the events repository 1150 in order to make such determina-
tion.

The events repository 1150 stores event definitions of pos-
sible events that may occur for the scenes of the applications.
The scenes repository 1152 and the entities repository 1155
are similar to the scenes repository 320 and the entities reposi-
tory 325, respectively, described above by reference to FIG. 3.
The behaviors repository 1160 is similar to the behaviors
repository 330 described above by reference to FIG. 3 except
that the behaviors stored in the behaviors repository 1160
includes references to events and responses stored in the
events repository 1150 and the responses repository 1162.
The behaviors repository 1160 stores all behaviors (i.e., asso-
ciations of events and responses) that are associated with
entities of the application. The repositories 1150, 1152, 1155,
1160, and 1162 each may be a cache or other persistent
storage medium in some embodiments.

The behaviors execution engine 1120 is similar to the
behaviors execution engine 315 described above by reference
to FIG. 3. In addition, the behaviors execution engine 1120
includes an entity finder 1125, a behavior finder 1130, a
conditions checker 1135, a response manager 1140, and an
event converter 1145.

The entity finder 1125 receives an event from the event
detector 1110 and finds one or more entities on which the
event has occurred. The entity finder 1125 in some embodi-
ments uses the coordinates of the event in the current scene to
find the entities on which the event occurred. The entity finder
1125 may also walk through entity hierarchy (e.g., by using a
breadth-first or a depth-first search) formed by the entities. An
example entity hierarchy was described above by reference to
FIG. 10.

The behavior finder 1130 receives a list of entities on which
the event has occurred. For each of the entities in the list, the
behavior finder 1130 identifies all behaviors that are associ-
ated with the entity. Then the behavior finder 1130 examines
each identified behavior to see which behavior refers to (or
includes) an event that matches the received event. When the
matching event of a behavior has additional conditions to
meet in order to trigger responses that are associated with the
event, the behavior finder 1130 uses the condition checker
1135 to determine whether these conditions are met. As
described above, the authoring platform of some embodi-
ments allows a user of the platform to define these additional
conditions to meet. An example condition may be whether the
entity has a certain name. More details about defining and
adding conditions to the event will be described further
below.

US 9,164,576 B2

19

When all conditions (if any) are met, the finder adds this
behavior to a list of behaviors from which to identify
responses to execute. This list of behaviors then includes the
behaviors that have an event that matches the received event
and have all of the conditions (if any) met. For each of the
behaviors in the behaviors list, the behavior finder 1130 iden-
tifies all responses that are associated with the matching event
of the behavior. The behavior finder 1130 then sends the
identified responses to the response manager 1140.

The response manager 1140 converts the received event
into parameters that conform to a protocol (or a format) using
the event converter 1145. As mentioned above, this protocol is
referred to as the conformance protocol. The parameters for-
matted in the conformance protocol are understood by the
behavior execution engine 1120 and different types of
response handlers. In other words, this conformance protocol
enables different types of responses to communicate with
each other.

The response manager 1140 sends the parameters con-
verted from the received event to a response handler for each
of the responses identified by the behavior finder 1130. The
response manager 1140 also sends additional parameters in
the conformance protocol. The additional parameters include
a parameter identifying the response to be executed by the
response handler. When the received event is associated with
a chain of responses for a behavior, the response manager
1140 sends all these parameters (i.e., parameters converted
from the received event and additional parameters) to the
response hander for the first response of the chain.

The response handlers 1175, 1195, and 1196 are similar to
the response handlers 335-345, respectively, described above
by reference to FI1G. 3. In addition, the response handler 1175
includes an input converter 1180, a response execution engine
1185, and an output converter 1190. The input converter 1180
converts the parameters received from the response manager
1140 into a format that a type of response can understand. For
instance, when the response handler 1175 handles a script
response, the input converter 1180 translates the received
parameters in the conformance protocol into values that the
script response can understand. The response execution
engine 1185 identifies a response to execute based on the
received parameters and then executes the response with the
inputs converted from the received parameters.

The response execution engine 1185 in some embodiments
retrieves response definitions (e.g., script) from the responses
repository 1162. The response execution engine 1185 then
sends the output of the executed response to the output con-
verter 1190 in some embodiments. In other embodiments, the
response execution engine 1185 does not send anything to the
output converter 1190. That is, these embodiments do not
include or use the output converter 1190.

The output converter 1190 converts the output into param-
eters in the conformance protocol. The output converter 1190
in some embodiments sends the parameters to the response
manager 1140. In some cases, the output converter 1190
sends the parameters to a response handler for a response that
is next in the chain of responses triggered by the received
event. When the next response in the chain is of the same type
as the response just executed, the response handler 1175 in
some embodiments may bypass the conversion of the output
into the conformance protocol parameters and use the output
of the executed response as inputs to the next response in the
chain.

When the response manager 1140 receives parameters
from a response handler, the response manager 1140 deter-
mines whether there is another response in a chain of
responses that needs to be executed. When such response

25

30

35

40

45

50

55

20

exists, the response manager 1140 relays the received param-
eters along with additional parameters to the response handler
for that next response. When such response does not exist
(i.e., when the previously executed response is the last
response in the chain or is not part of'a chain of responses), the
response manager 1140 in some embodiments converts the
parameters to an event format using the event converter 1145.
The response manager 1140 of these embodiments then sends
the event to the entity finder 1125 so that the entity finder 1125
can determine whether this event triggers any other
responses.

An example operation of the application 1100 will be
described now by reference to FIG. 12. FIG. 12 conceptually
illustrates a process 1200 performed by some embodiments to
receive an event and execute responses associated with the
event. The process 1200 may be performed by an application
such as the application 1100 that is built by an authoring
platform of some embodiments. The process 1200 starts as
the application starts playing back a scene.

The process 1200 begins by determining (at 1205) whether
anevent has occurred. In some cases, the process 1200 detects
an event when the user interacts with one or more entities of
the scene by touching or clicking the entities of the scene. In
other cases, the process 1200 detects an event when one or
more entities of the scene change. Such changes may include
appearance or disappearance of an entity of a scene. As
described above, some such changes may not constitute an
event. The process determines whether the changes could
make an event by going through the event definitions. For
instance, the application 1100 looks up the event definitions
stored in the events repository 1150 in order to make such
determination. The application 1100 detects an event 1115,
which is a touchdown event.

When the process determines (at 1205) that no event has
occurred, the process 1200 then determines whether to end
1210. The process 1200 ends when the application plays
another scene or when the application is closing down. If at
1210 the process determines that it should end, the process
ends. Otherwise, the process 1200 loops back to 1205 to
determine whether an event has occurred.

When the process determines (at 1205) that an event has
occurred, the process identifies (at 1215) the entities of the
scene on which the event has occurred. The process in some
embodiments uses the location where the event has occurred
to identify such entities. For instance, the application 1100
goes through an entity hierarchy to identify all entities that
overlaps the location of the touchdown event 1115. The appli-
cation 1100 identifies an image as the entity on the touchdown
event. That is, the user of the application 1100 is touching the
image displayed.

Next at 1220, the process 1200 selects an entity that is
identified at 1215 and identifies all behaviors that are associ-
ated with the selected entity. The process then determines (at
1225) whether any of the identified behaviors matches the
event that has occurred on the selected entity. That is, the
process determines whether each of the identified behaviors
has an event that matches the event that has occurred on the
selected entity. The process examines each identified behav-
ior to see the behavior refers to (or includes) an event that
matches the event occurred. For example, the process 1200
selects an image on which a touchdown event occurred. The
process 1200 identifies two behaviors that are associated with
the image. Each of these two behaviors includes a touchdown
event. In the first behavior, the touchdown event is associated
with an animation response, which, when executed, will
enlarge the image by 200 percent. In the second behavior, the
touchdown event is associated with another animation

US 9,164,576 B2

21

response, which, when executed, makes the image glow.
Accordingly, the process 1200 determines that these two
behaviors have an event that matches the event occurred.

In some embodiments, the process 1200 also checks for the
conditions that might be augmented to the matching event.
The conditions checking process will be described in detail
further below by reference to FIG. 13.

When the process 1200 determines (at 1225) that none of
the behaviors has a matching event or satisfies all the condi-
tions (if any). When none of the behaviors has a matching
event or satisfies all the conditions, the process then proceeds
to 1250, which will be described further below.

When the process 1200 determines (at 1225) that there are
one or more behaviors that have a matching event and have all
of the conditions (if any) met, the process selects (at 1230)
one of the behaviors and identifies all responses that are
associated with the matching event. At 1235, process 1200
then selects and executes a next response. In some cases, this
next response is the first of a series of responses that is
associated with the matching event of the selected behavior.
In the example, the process 1200 selects the first behavior of
the two behaviors identified. Then, the application 1100
executes the animation response, causing the image to
enlarge by 200%.

Next, the process 1200 determines (at 1240) whether there
are more responses that are associated with the matching
event of the selected behavior that have not been executed.
When the process 1200 determines (at 1240) that there are
more such responses, the process 1200 loops back to 1235 to
select and execute the next response. Otherwise, the process
1200 proceeds to 1245 to determine whether there are more
identified behaviors that have not been processed yet. In the
example, the process 1200 selects the second behavior of the
two behaviors identified. The process 1200 then executes the
animation response to cause the image to glow. In some
embodiments, the process 1200 may execute the animation
responses of the first and the second behaviors in parallel
rather than sequentially because the two animation responses
are not in the same chain of responses of one behavior.

When the process determines (at 1245) that there are more
identified behaviors that have not been processed yet, the
process 1200 loops back to 1230 to select another identified
behavior and identify all responses that are associated with
the matching event of this behavior. Otherwise, the process
proceeds to 1255 to determine whether there are more iden-
tified entities remain to be processed. When the process 1200
determines (at 1250) that there are more identified entities to
process, the process 1200 loops back to 1220 to select another
identified entity. Otherwise, the process 1200 ends.

FIG. 13 conceptually illustrates a process 1300 that some
embodiments perform to identify behaviors that have match-
ing event and have all conditions (if any) met. The process
1300 may be performed by an application that is built by the
authoring platform of some embodiments. The process
begins by receiving (at 1305) an event that has occurred on an
entity of'a scene and one or more behaviors that are associated
with the entity.

Next, the process 1300 selects (at 1310) a next behavior
from the behaviors received at 1305. The process 1300 then
determines (at 1315) whether the selected behavior has an
event that matches the received event. In some embodiments,
the process 1300 compares the event data defined in the
behavior and the received event data. When the process 1300
determines (at 1315) that the selected behavior does not have
a matching event, the process 1300 proceeds to 1335, which
will be described further below.

20

25

40

45

50

22

When the process 1300 determines (at 1315) that the
selected behavior has a matching event, the process 1300 then
determines (at 1320) whether the matching event has condi-
tions to meet to trigger responses that are associated with the
matching event. When the process 1300 determines (at 1320)
that the matching event does not have any conditions to meet,
the process 1300 proceeds to 1330 to identify the selected
behavior as a behavior of which to execute responses. Other-
wise, the process 1300 proceeds to 1325 to determine whether
all conditions are met. The process 1300 checks each condi-
tion. An example condition may be whether the entity has a
certain color value. The process determines that this condi-
tion is met when the entity has that color value.

When the process 1300 determines (at 1325) that all con-
ditions are met, the process 1300 proceeds to 1330 and iden-
tifies the selected behavior as a behavior, of which to execute
responses. When the process 1300 determines (at 1325) that
not all conditions are met, the process 1300 determines (at
1335) whether there are more received behaviors left to pro-
cess. When the process 1300 determines (at 1335) that there
are more such behaviors left, the process loops back to 1310
to select the next received behavior. Otherwise, the process
ends.

Having described the relationship between instances of
scenes, entities, behaviors, events, and responses that an
authored application uses at runtime and the operations of the
authored application at runtime, the next Section II will now
describe several tools for defining scenes, entities, behaviors,
events, and responses.

II. GUI Tools of Authoring Platform

A. Behavior Editor

FIG. 14 conceptually illustrates a behavior editor 1400 of
the authoring platform of some embodiments. The behavior
editor 1400 allows a user of the authoring platform to create
and modify behaviors for an application being built by the
authoring platform. As shown, the behavior editor 1400
includes a behaviors pane 1405, an events column 1420, a
responses column 1425, and a script editing area 1440. The
behavior editor 1400 also includes add and delete buttons
1410 and 1430 and text panes 1415 and 1435. FIG. 14 also
illustrates five behaviors in the behaviors pane 1405, five
events in the events column 1420, one response in the
responses column 1425, and a script code snippet in the script
editing area 1440 as examples.

The behavior editor 1400 may be launched from a GUI of
the authoring platform. For instance, the behavior editor 1400
can be launched by selecting a behavior listed in a behaviors
library such as the behaviors library 620 of the GUI 600
described above by reference to FIGS. 6 and 7. The behavior
editor 1400 may occupy a portion or the entirety of the GUI
from which the behavior editor 1400 launched. The behavior
editor may also be a separate window from the GUI. This
separate window may be separately manipulated (i.e., closed,
opened, resized, etc.). Also, in some embodiments, the behav-
iors pane 1405, the events column 1420, and the responses
column 1425 are within the same behavior editor 1400 win-
dow as shown. In other embodiments, one or more of the
behaviors pane 1405, the events column 1420, and the
responses column 1425 may be a separate window. In some
other embodiments, two of the behaviors pane 1405, the
events column 1420, and the responses column 1425 may be
in the same window.

The behaviors pane 1405 lists behaviors that can be edited
in the behavior editor 1400. The behavior editor 1400 allows
the user of the authoring platform to add a behavior to the
behaviors pane 1405. For instance, the user can click on the
plus sign of the add and delete button 1410 to add a behavior.

US 9,164,576 B2

23

A graphical object (e.g., a gear-looking icon) appears in the
behaviors pane when a new behavior is added in some
embodiments. The behavior added in this manner may ini-
tially be an empty one with a default name. Events and
responses may be added or defined through the events column
1420 and the responses column 1425. The user can also
remove a behavior by selecting the behavior and clicking on
the minus sign of the add and delete button 1410.

The behavior editor 1400 also allows the user to import and
export behaviors to and from the behaviors pane 1405. The
users may exchange behaviors with each other by exporting
the behaviors to files and exchanging the files. The behaviors
pane 1405 may also include predefined behaviors, which in
some embodiments have been provided as part of the author-
ing platform. In some embodiments, the behaviors added to or
deleted from the behaviors pane 1405 will also be added to or
deleted from a behaviors library, such as the behaviors library
620. That is, the behaviors pane of a behavior editor and a
behaviors library will maintain the same list of behaviors.

In order to edit a behavior, the user of the authoring plat-
form can select a behavior in the behaviors pane 1405. This
selection may involve clicking a mouse button or tapping a
touchscreen to select a graphical object representing a behav-
ior, selecting an option through keyboard input, etc. The
behaviors pane 1405 provides a visual cue (e.g., different
background color, bolding the name of the selected behavior,
etc.) to indicate the selection of the behavior. For instance, the
name of the “To Scene” behavior is bolded to indicate the
selection of that behavior as shown.

When abehavior is selected in the behaviors pane 1405, the
events column 1420 lists one or more events of the selected
behavior. In some embodiments, the events column 1420 may
list predefined events by default when the selected behavioris
an empty behavior. The behavior editor 1400 also allows the
user to create or add event definitions in the events column.

The five events examples listed in the events column 1420
define different interactions of the user with the entity with
which the selected behavior would be associated. For
instance, the “Touch Down” event is a touchdown event,
which represents the user’s placing a finger (or, pressing
down a mouse button) on the entity. The “Touch Moved”
event is an event that represents the user’s moving the finger
while touching the entity. The “Touch Up” event is a touchup
event, which represents the user’s lifting the finger from the
entity. The “Enter Frame” event is an event that represents the
user’s moving the finger into the area occupied by the entity
while keeping the finger’s contact that was initiated outside
the area. The “Exit Frame™ event is an event that represents
the user’s moving the finger out of the area occupied by the
entity while keeping the finger’s contact.

In order to view the responses that are associated with an
event, the user of the authoring platform can select an event in
the events column 1420. This selection may involve clicking
a mouse button or tapping a touchscreen to select the name of
the event, selecting an option through keyboard input, etc.
The events column 1420 provides a visual cue (e.g., different
background color, bolding the name of the selected behavior,
etc.) to indicate the selection of the event. For instance, the
name of the “Touch Up” event is bolded to indicate the selec-
tion of that event as shown.

When an event is selected in the events column 1420, the
responses column 1425 lists one or more responses that are
associated with the selected event. For instance, the responses
column 1425 displays the “Curl to Scene” response, which is
a script response that is associated with the “Touch Up” event.
The behavior editor 1400 also allows the user to create or add
response definitions in the responses column 1425. For

40

45

50

55

60

24

instance, the behavior editor 1400 allows the user of the
authoring platform to add a response by clicking on the plus
sign of the add and delete button 1430. A default response
name appears in the responses column 1425 when a new
response is added in some embodiments. The response added
in this manner may initially be an empty one and do not have
atype. The user may specify the response’s type (e.g., a script
response, an animation response, a complied code response,
etc.) by, for example, prompting a dropdown menu and select-
ing an item representing a response type. The user can also
remove a response by selecting the response in the responses
column 1425 and clicking on the minus sign of the add and
delete button 1430.

The behavior editor 1400 in some embodiments provides
the script editing area 1440 in which the user can modify a
script response. In order to edit a script response, the user can
select a response listed in the responses column 1425. This
selection may involve clicking a mouse button or tapping a
touchscreen to select the name of the response, selecting an
option through keyboard input, etc. When the response
selected in the responses column 1425 is a script response, the
behavior editor 1400 displays the script code on the script
editing area 1440. In some cases, the behavior editor 1400
may display nothing or some default script snippet if the
selected script response is an empty response.

The example script shown in the script editing area 1440 is
a JavaScript snippet that defines the use of “destination-
Scene” variable. This variable can be visually linked to a
scene. Visually linking a variable to a scene will be described
below by reference to FIG. 16. This example script, when
executed, causes the application to change the current scene
to another scene upon receiving a touchup event on an entity
with which “To Scene” behavior is associated.

The behavior editor 1400 in some embodiments provide
other means (not shown) of editing for other types of
responses. For instance, the behavior editor may launch or
open within the behavior editor a key indices display area,
such as the key indices display area of FIG. 9, for editing an
animation response. Also, the behavior editor 1400 in some
embodiments allows the user to change the names of behav-
iors and responses by typing in desired names in the text
panes 1415 and 1435, respectively.

FIG. 15 illustrates the behavior editor 1400 of FIG. 14.
Specifically, FIG. 15 illustrates that the behavior editor 1400
allows the user of the authoring platform to add and edit
conditions to an event. As described above, these conditions
are associated with an event of a behavior and they have to be
met in order for the event to trigger the responses associated
with the event. In some embodiments, the conditions may
relate to the properties of an entity with which the selected
behavior is associated. For instance, the name of the entity
may be a condition.

In some embodiments, the behavior editor 1400 provides a
predicate editor 1505 for defining and adding conditions. The
predicate editor 1505 in some embodiments includes a group
of dropdown menus and a text pane. For instance, the predi-
cate editor includes four drop down menus 1510 and a text
pane 1515. Each dropdown menu contains a list of items that
represent certain values. These items and values are pre-
defined in some embodiments. The user can define different
conditions by selecting different combinations of items from
these dropdown menus and typing in desired texts. For
instance, the combinations of the items and the typed in text
as shown, “Any,” “of the following are true,” “name,” “con-
tains,” “clock,” constitute a condition requiring that the name
of'the entity should be “clock™ in order for the touchup event
on the entity to trigger the responses associated with the

US 9,164,576 B2

25

touchup event. The encircled plus and minus signs 1520 are
for adding and removing dropdown menus and text panes.

The behavior editor 1400 in some embodiments displays
the predicate editor 1505 when the user selects an event listed
in the events column 1420. This selection may involve click-
ing a mouse button or tapping a touchscreen to select the
name of the event, selecting an option through keyboard
input, etc. For instance, the user may double-click on an event
to launch the predicate editor 1505. The predicate editor 1505
occupies a portion or the entirety of the behavior editor 1400.
The behavior editor may also be a separate window that can
be separately manipulated from the behavior editor 1400.

The behavior editor 1400 in other embodiments provide
other means of defining and editing conditions. For instance,
the behavior editor 1400 may provide a script editing area for
creating and/or editing conditions. However, the behavior
editor 1400 in some embodiments provides the predicate
editor 1505 in order to make it easier for the user of the
platform to author an application. For instance, a user may be
able to author applications without getting familiar with writ-
ing scripts or without much knowledge in programming.

B. Visually Associating Visual Assets and Non-Visual
Assets

FIG. 16 conceptually illustrates a GUI 1600 of the author-
ing platform of some embodiments. Specifically, this figure
illustrates in six different stages 1605-1630 that the GUI
allows a user of the platform to associate a behavior having a
script response with an entity of a scene being edited. As
shown, the GUI 1600 includes a scenes pane 1635, a scene
preview area 1640, and a behaviors library 1645.

The scenes pane 1635 in some embodiments is an area of
the GUI 1600 that lists the scenes of an application that is
being authored by the authoring platform. Scenes may be
added to and deleted from the application and the scenes pane
1635 lists different sets of scenes accordingly. The scenes
pane 1635 displays the scenes as small thumbnail images
with scene names in some embodiments. For instance, the
scenes pane 1635 displays scenes 1 and 2 as small thumbnail
images showing entities of the scene. The scene 2 thumbnail
shows that the scene 2 includes an entity 1636.

The scene preview area 1640 is similar to the scene preview
area 615 described above by reference to FIG. 6. The scene
preview area 1640 displays a scene of the application being
built. The user can create or modify the scene by adding or
deleting entities (e.g., a graphical icon or an image) to and
from the scene preview area 1640. In some embodiments, the
scene preview area 1640 may also display playback of the
scene. In addition, the scene preview area 1640 in some
embodiments encloses the scene preview area 1640 with a
frame that represents a device on which the application would
be running. The scene preview area 1640 displays a scene that
is selected in the scenes pane 1635.

The behaviors library 1645 is similar to the behaviors
library 620 described above by reference to FIG. 6. In some
embodiments, the GUI 1600 allows the user of the authoring
platform to associate an entity and a behavior by dragging a
graphical object representing the behavior and dropping it
onto an entity displayed in the scene preview areca 1640. When
the behavior that is associated with the entity has a script
response with a variable that represents an entity or a scene,
the GUI 1600 allows the user to graphically link the variable
with an entity or a scene. For instance, the “To Scene” behav-
ior includes a script response, which, when executed, causes
the application to change the current scene to another scene
upon receiving a touchup event on an entity with which “To
Scene” behavior is associated.

10

15

20

25

30

35

40

45

50

55

60

65

26

At the first stage 1605, the scene preview area is displaying
scene 1. As shown, the scene 1 includes four entities 1641-
1644. The scenes pane 1635 lists scenes 1 and 2. The behav-
iors library 1645 lists three behaviors, “Bulge,” “Glow,” and
“To Scene.” At the second stage 1610, the user of the author-
ing platform selects the “To Scene” behavior. This selection
may involve clicking a mouse button or tapping a touchscreen
to select a graphical object representing a behavior, selecting
an option through keyboard input, etc.

At the third stage 1615, the user of the authoring platform
drags the “To Scene” behavior over the entity 1641. In some
embodiments, as the user moves the cursor while a behavior
is selected, the GUI 1600 shows the graphical object (e.g., a
gear-looking icon) along the path of the cursor in order to
provide a visual cue. When the graphical object hovers near
an icon, the GUI may provide another visual cue (e.g., a
different background color for the icon) to indicate that the
behavior represented by the graphical object will be associ-
ated with the icon once the graphical object is dropped there.
The user drops the graphical object representing the “To
Scene” behavior onto the entity 1641. As a result, the icon
1641 is associated with the “To Scene” behavior.

At the fourth stage 1620, the user selects the entity 1641 to
view the variables associated with the script response of the
“To Scene” behavior. For instance, the user right-clicks the
entity 1641 on the scene preview area 1640. Upon receiving
the selection of the entity, the GUI 1600 in some embodi-
ments prompts a drop-down menu 1646 from which the user
can select an item representing a variable. The dropdown
menu 1646 lists an item for a variable that represents a scene
to change to and the user selects it.

Atthe fifth stage 1625, upon the user’s selection of the item
in the menu 1646, the GUI 1600 displays a bar 1626. One end
of the bar is anchored on the entity 1641. The GUI 1600
allows the user to extend this bar by dragging the other end of
the bar. At the sixth stage 1630, the user extends the bar 1626
to the scene 2 listed in the scenes pane 1635. In some embodi-
ments, the GUI provides a visual cue (e.g., a different back-
ground color) to indicate that the variable’s value is set to the
scene 2.

FIG. 17 conceptually illustrates a device 1700 that runs the
application described above by reference to FIG. 16. Specifi-
cally, FIG. 17 illustrates in three different stages 1705-1715
that the application executes the response of the “To Scene”
behavior upon receiving a touchup event on the entity 1641.
The device 1700 in some embodiments has a memory (not
shown) to store the application and a processor (not shown) to
run instructions of the application. The device 1700 also has
a display area 1720 that can display scenes of the application.
The display area 1720 is capable of detecting user’s touch.
More details about a device like the device 1700 will be
described further below by reference to FIG. 25.

At the first stage 1705, the device 1600 is running the
application. Specifically, the display area 1720 displays the
scene 1 of the application. That is, the display area 1720
displays the four entities 1641-1644. As mentioned above, the
entity 1641 is associated with the “To Scene” behavior. At the
second stage 1710, a user of the application touches the entity
with her finger and lifts it up. As the user lifts up her finger, the
application receives a touchup event from an operating sys-
tem that runs on the device 1700. The application then per-
forms a process such as the process 1200 described above by
reference to FIG. 12 to execute the response that is associated
with the touchup event. At the third stage 1715, the applica-
tion switches to the scene 2 described above by reference to
FIG. 16. Thus, the display area 1720 displays the entity 1636.

US 9,164,576 B2

27

C. Key-Indexed Graphs

FIG. 18 conceptually illustrates a GUI 1800 of the author-
ing platform of some embodiments. Using the GUI 1800, a
user of the authoring platform builds interactive applications
by specifying scenes, entities, and behaviors, etc. As shown in
the figure, the GUI 1800 includes a scenes pane 1805, a scene
information pane 1810, a scene preview area 1820, an entity
properties editor 1830, a behaviors library 1825, and a key
indices display area 1815.

The scenes pane 1805 is similar to the scenes pane 1635
described above by reference to FIG. 16. The scenes pane
1805 in some embodiments is an area of the GUI 1800 that
lists the scenes of an application that is being authored by the
authoring platform. Scenes may be added to and deleted from
the application and the scene pane 1805 lists different sets of
scenes accordingly. The scenes pane 1805 displays the scenes
as small thumbnail images with scene names in some
embodiments. For instance, the scenes pane 1805 displays an
example scene 1 as a small thumbnail image showing entities
of the scene.

The scene information 1810 displays information about a
scene selected in the scenes pane 1805. For instance, the
scene information pane 1810 includes two text panes 1811
and 1812. In the text pane 1811, the GUI 1800 displays the
name of the selected scene. The GUI 1800 allows the user to
type in a desired name should the user want to change the
name of the selected scene. In the text pane 1812, the GUI
1800 displays the description of the selected scene. The user
can type in a desired description for the selected scene.

The behaviors library 1825 is similar to the behaviors
library 1645 described above by reference to FIG. 16. The
behaviors library 1825 displays a list of behaviors that are
represented as graphical objects. For instance, the behaviors
library 1825 display a gear-looking icon next to the name of
abehavior. In some embodiments, the behaviors library 1825
displays predefined behaviors.

The scene preview area 1820 is similar to the scene preview
area 1640 described above by reference to FIG. 16. The scene
preview area 1820 displays a scene of the application being
built by the authoring platform. The user can modify the scene
by adding or deleting entities (e.g., a graphical icon or an
image) to and from the scene preview area 1820. The scene
preview area 1820 displays a scene that is selected in the
scenes pane 1805. For instance, the scene preview area 1820
displays entities 1821-1823 of the scene 1 that is currently
selected in the scenes pane 1805. In some embodiments, the
scene preview area 1820 may also display playback of the
scene. That is, the GUI 1800 can simulate the execution of the
application being built within the scene preview area 1820.

The scene preview area 1820 in some embodiments
encloses the scene preview area 1820 with a frame that rep-
resents the appearance of a device on which the application
would be running. In some embodiments, the GUI 1800 pro-
vides different frames for different devices so that the user can
replace the frame enclosing the scene preview area 1820 with
another frame of another device. Also, the GUI 1800 allows
the user to change the orientation (e.g., portrait or landscape)
of the scene preview area 1820.

In some embodiments, the GUI 1800 allows the user to
associate an entity displayed in the scene preview area 1820
and a behavior in the behaviors library 1825 by dragging a
graphical object representing the behavior and dropping it
onto the entity. When the behavior that is associated with the
entity has a script response with a variable that represents an
entity or a scene, the GUI 1800 allows the user to graphically
link the variable with an entity or a scene. An example of such
graphical linking is described above by reference to FIG. 16.

20

30

40

45

28

The key indices display area 1815 is similar to the key
indices display area 820 described above by reference to FIG.
8. The key indices display area 1815 displays a key-indexed
graph for each of the entities ofthe scene that is selected in the
scenes pane 1805. For instance, the key indices display area
1815 is displaying three key-indexed graphs 1816-1818 for
the entities 1821-1823, respectively, of the scene 1. The
names of the entities 1821-1823 are “Icon 1,” “Icon 2,” and
“Icon 3,” respectively.

The key indices display area 1815 includes a time code line
1842 for indicating duration of each key-indexed graph and
temporal positions of key indices along the key-indexed
graphs 1816-1818. For instance, each of the key-indexed
graph 1816-1818 has a duration of a second. The key index
handle 1819 is placed on the key-indexed graph 1816 around
0.6 second.

In some embodiments, the GUI 1800 allows the user of the
authoring platform to place handles for key indices on the
key-indexed graph. As mentioned above, a pair ofkey indices
on a key-indexed graph represents a start and an end of an
animation for an entity (e.g., an icon) of a scene. Different
embodiments have different ways of adding handles for key
indices. For instance, the GUI 1800 of some embodiments
provides a playhead 1841. The user can move the playhead
1841 horizontally along the key-indexed graph to select a
position to add a handle. The user can add a handle for a key
index by selecting a position along the key-indexed graph and
then moving the corresponding entity to a new location within
the scene preview area 1820. Once the user moves the entity,
a handle will appear at the selected position on the key-
indexed graph. Instead of moving the corresponding entity to
a new location in the scene preview area, the user can also
enter different values for properties of the entity in the entity
properties editor 1830. That is, the user can first select a
position along the key-indexed graph with the playhead 1841
and then type in the position values (e.g., coordinates values)
for the entity displayed in the scene preview area 1820. As
different values are entered, a handle will appear at the
selected position on the key-indexed graph.

In some embodiments, the playhead 1841 moves along the
key-indexed graph as the selected scene is played back in the
scene preview area 1820. The 8UI in some embodiments
provides a playback control buttons 1824 for the user to
control the playback of the selected scene.

The entity properties editor 1830 includes a group of text
panes in which the user can type in numerical values to
modify each property of an entity. For instance, three text
panes 1831-1833 are for x, y, and z coordinates of an entity
displayed in the scene display area 1820. In some embodi-
ments, the GUI allows the user to edit the properties of the
entity at a key index. The user can select a key index and
modify the property values using the entity properties editor
1830.

FIG. 19 illustrates the GUI 1800 of FIG. 18, except the key
indices display area 1815 displays sub-key-indexed graphs
for the properties of the entity 1821. Not all of sub-key-
indexed graphs for the properties are depicted in this figure
for simplicity of description. By providing a sub-key-indexed
graph for each of the properties of an entity, the GUI 1800
allows the user to control each property of the entity by
adding and editing key indices to the sub-key-indexed graph.

The GUI 1800 in some embodiments allows the user to
expand a key-indexed graph for an entity by selecting the
key-indexed graph for the entity. This selection may involve
clicking a mouse button or tapping a touchscreen to select the
key-indexed graph, selecting an option through keyboard
input, etc. For instance, the user may click on an expansion

US 9,164,576 B2

29

indicator 1840 to cause the key indices display area 1815 to
display sub-key-indexed graphs for the properties of the
entity 1821. The properties of an entity in some embodiments
include a position, a scale, a rotation, a color, etc. to name a
few.

In some embodiments, the GUI 1800 allows the user of the
authoring platform to place handles for key indices on the
sub-key-indexed graphs in a similar manner to add key indi-
ces to the key-indexed graphs for the entities. For instance, the
user can add a handle for a key index on the sub-key-indexed
graph 1905 which is for the size property of the entity 1821.
The user can first select a position along the sub-key-indexed
graph 1305 with the playhead 1841 and then specity a desired
size (e.g., by grabbing an edge and stretching/shrinking) of
the icon 1821 in the scene preview area 1820. A new handle
for akey index will appear on the selected position. When the
scene is played back, the size of the entity 1821 will gradually
stretch or shrink to the desired size at the time specified by the
handle for the key index. In a similar manner, the user can add
handles for key indices to other sub-key-indexed graphs for
other properties of the entity 1821.

Having described several GUI tools for editing an authored
application, the next Section III will now describe merging
responses using some of those GUI tools.

III. Merging Responses

FIG. 20 conceptually illustrates a process 2000 that some
embodiments perform to manage a key indices display area.
Specifically, some embodiments perform the process 2000 in
order to combine several responses in the key-indexed graphs
displayed in the key indices display area. In some embodi-
ments, the process 2000 is performed by a GUI of the author-
ing platform of some embodiments such as the GUI 1800.
The process 2000 will be described with reference to FIG. 21.
FIG. 21 illustrates in five different stages 2105-2125 merging
two different animation responses of two different behaviors
in the sub-key-indexed graphs of the GUI 1800 described
above by reference to FIG. 18. FIG. 21 illustrates the GUI
1800 of FIG. 18, except that FIG. 21 does not illustrate all
components of the GUI 1800 for the simplicity of description.

The process 2000 begins by receiving (at 2005) a user input
regarding the key indices display area. The user input may be
selecting a scene to cause the key indices display area to
display the entities of the scene, expanding a key-indexed
graph into sub-key-indexed graphs, adding/deleting/moving
handles from key-indexed graphs, dropping of a behavior
onto a key indices display area, etc. At the first stage 2105 of
FIG. 21, the user has selected the scene 1 and expanded the
key-indexed graph for the entity 1821 into the sub-key-in-
dexed graphs for the properties of the entity 1821. As
described above, the entity 1821 is an icon named “Icon 1.7

Next, the process 2000 determines (at 2010) whether the
process has received a behavior into the key-indexed graph.
The process 2000 in some embodiments determines that it has
received a behavior when the user drags and drops a graphical
object representing the behavior into the key-indexed graph.
Atthe second stage 2110 of FIG. 21, the user has selected and
dragged “Bulge” behavior over the key indices display area
1815 near the sub-key-indexed graphs for the entity 1821 and
dropped it. In this example, the “Bulge” behavior includes an
animation response with the same name “Bulge.” This ani-
mation response, when executed, changes the size of the
entity associated with the “Bulge” behavior by enlarging the
entity. As mentioned above, an animation response may
include a set of key indices. Since the “Bulge” response will
cause the entity to change the size, this response has one or
more key indices on the sub-key-indexed graph for the size
property of the entity.

25

30

35

40

45

30

Returning to FIG. 20, when the process 2000 determines
(at 2010) that the process has not received a behavior, the
process proceeds to 2015 to display the key-indexed graphs in
the key indices display area according to the received action.
For instance, the process will display the key-indexed graphs
for entities of a different scene when the user has selected a
different scene to edit.

When the process 2000 determines (at 2010) that the pro-
cess has received a behavior, the process determines (at 2020)
whether it is necessary to change the key-indexed graphs. The
process 2000 in some embodiments determines that key-
indexed graph changes are necessary when the received
response requires to place key indices in the key-indexed
graphs. For instance, when the received response is an ani-
mation response, the process determines that key-indexed
graph changes are necessary. Also, when the received
response is a type of response other than an animation
response but still requires placing key indices in the key-
indexed graphs, the process determines that key-indexed
graph changes are necessary. For instance, a script response
written in such a way that results in animating the entity
would require to place key indices in the key-indexed graph.

When the process 2000 determines (at 2020) that the
received response does not require to change the key-indexed
graph, the process 2000 proceeds to 2025 to notify the user
that the behavior that was brought into the key-indexed graph
does not require key-indexed graph changes. Different
embodiments notify the user differently. For instance, the
process 2000 in some embodiments prompts a message indi-
cating that the received behavior does not require key-in-
dexed graph changes.

When the process 2000 determines (at 2020) that the
received behavior requires key-indexed graph changes, the
process determines (at 2030) whether the received behavior is
the first behavior that the key-indexed graphs have received.
When the process determines (at 2030) that the received
behavior is the first behavior that is brought into the time
display area, the process displays (at 2035) the response of the
behavior that requires key-indexed graphs changes. The pro-
cess displays the response by placing the key indices of the
response in the appropriate key-indexed graphs or sub-key-
indexed graphs.

For instance, at the third stage 2115 of FIG. 21, the “Bulge”
behavior is the first behavior that was brought into the key
indices display area for the entity 1821°s sub-key-indexed
graphs. The “Bulge” response of the “Bulge” behavior has
one key index for the size property ofthe entity 1821. Accord-
ingly, a handle 2155 for the one key index is placed on
sub-key-indexed graph 2160 as shown. In some embodi-
ments, the key indices display area 1815 switches to a differ-
ent view when it displays key indices for a response. This
view is for displaying the key-indexed graphs and sub-key-
indexed graphs for the duration of the response only. That is,
the beginning of each sub-key-indexed graph represents the
moment that the entity receives the event associated with the
response, not the beginning of a scene. In some embodiments,
the key indices display area 1815 provides a visual cue to
indicate that the key indices display arca 1815 is displaying a
response, not a scene. For instance, the key indices display
area 1815 may display texts saying that the key indices dis-
play area 1815 is displaying a response or may use different
background colors.

Returning to FIG. 20, when the process 2000 determines
(at 2030) that the received behavior is not the first behavior
received (i.e., that the key indices display area is already
displaying one or more responses), the process 2000 deter-
mines (at 2040) whether the response of the behavior just

US 9,164,576 B2

31

received and the responses that are already displayed in the
key indices display area are associated with the same event.
When the process 2000 determines (at 2040) that these
responses are not associated with the same event, the process
2000 proceeds to 2045 to notify the user that these responses
are not associated with the same event and therefore cannot be
merged.

At the fourth stage 2120 of FIG. 21, the user has selected
and dragged “Fade” behavior over the key indices display
area 1815, which is displaying “Bulge” response of the
“Bulge” behavior. In this example, the “Fade” behavior
includes an animation response with the same name “Fade.”
This animation response, when executed, changes the opacity
of'the entity associated with the “Fade” behavior such that the
entity appears to be fading. Since the “Fade” response will
cause the entity to change the opacity only, this response has
one or more key indices on the sub-key-indexed graph for the
opacity property of the entity.

When the process 2000 determines (at 2040) the response
just brought in and the responses displayed in the key indices
display area are associated with the same event, the process
2000 then determines (at 2050) whether there are conflicts to
resolve with regards to placing the key indices of the response
justbrought in. Thatis, a key index of that response may be for
the sub-key-indexed graph that already has other key indices
placed or may even overlap with another existing key index.
The process 2000 would have to determine what to do with
the key indices. When the process 2000 determines (at 2050)
that there are no conflicts to resolve, the process 2000 pro-
ceeds to 2055 and place the key indices of the response just
brought in at the appropriate positions along the key-indexed
graphs or sub-key-indexed graphs.

At the fitth stage 2125 of FIG. 21, the “Fade” behavior is
not the first behavior that was brought into the key indices
display area 1815 for the entity 1821’s sub-key-indexed
graphs. The “Fade” response of the “Fade” behavior has one
key index for the opacity property of the entity 1821. More-
over, there is no existing key index in sub-key-indexed graph
2170 for the opacity property of the entity 1821. Accordingly,
ahandle 2165 for the one key index is placed on the sub-key-
indexed graph 2170 as shown.

When the process 2000 determines (at 2050) that there are
conflicts to resolve, the process 2000 proceeds to 2060 to
resolve the conflicts. For instance, when a particular key
index of the response just brought in overlaps with an existing
key index, the process 2000 in some embodiments may (1)
keep only the existing key index in the key-indexed graph, (2)
place the particular key index in the key-indexed graph and
remove the existing key index from the key-indexed graph, or
(3) composite the two key indices (e.g., by taking a mean of
the values represented by the two key indices). When the
particular key index and existing key indices fall in the same
key-indexed graph, the authoring platform of different
embodiments may (1) keep the existing key indices only, (2)
keep the key indices of the response being dropped, or (3)
keep all of the key indices in the key-indexed graph. The
process 2000 then ends.

IV. Automatically Detecting Boundaries

As mentioned above, the authoring platform of some
embodiments is used by application developers to develop
applications that run on devices. In order for the developed
applications function properly, the applications have to meet
the specifications ofthe devices. For instance, the scenes of an
application would have to meet the specifications for the
output video of a device. For example, a device may output its
video as arectangular shape with certain height, width, corner

25

40

45

32

roundness, etc., and a scene’s height, width, corner round-
ness, etc. have to match those of the output video of the
device.

In some cases, the device manufacturers provide the appli-
cation developers with the output video specifications during
an initial phase of designing the devices so that application
developers can develop the applications to run on the devices
in parallel. However, it is often the case that the output video
specifications for the devices get changed before the manu-
facturer finalizes the design of the device. Also, the manufac-
turers may change the video output specifications for the
devices for the next versions of the devices. In such cases, the
applications developers may have to comply with the changes
to the video output specifications in order to ensure the proper
functioning or rendering of the scenes of the applications.
Complying with those changes may involve performing sub-
stantial and resource-consuming tasks.

The authoring platform of some embodiments enables the
applications being authored to detect some of the video out-
put specifications automatically so that the developers do not
have to modify their applications to comply with changes to
those video output specifications. In particular, the applica-
tions authored by the authoring platform will automatically
detect boundaries of a transparent area in an image provided
by a device manufacturer. In some embodiments, the bound-
aries of the transparent area of the image serve as a video
output specification of a device that the device manufacturer
makes. For instance, the device is designed to output its video
as a rectangular shape with certain height, width, corner
roundness, etc., and the manufacturer conveys this dimen-
sional information to the applications developers as a rectan-
gular image with a transparent area having the certain height,
width, corner roundness, etc. In some embodiments, an image
provided by the manufacturer is in a format that supports
transparency. For instance, some embodiments use a Portable
Network Graphics (.png) or a Tagged Image File Format
(tifh).

FIG. 22 conceptually illustrates a process 2200 that some
embodiments performs to detect boundaries of a transparent
area within an image. The process 2200 in some embodi-
ments is performed by an authoring platform when a user of
the authoring platform creates a scene for the application that
is being authored by the authoring platform. The process
2200 may also be performed by an application that is authored
by the authoring platform of some embodiments when it
renders a scene while the application executes. The process
2200 will be described by reference to FIG. 23. FIG. 23
conceptually illustrates in four different stages finding
boundaries of a transparent area within an image.

The process 2200 begins by receiving (at 2205) an image
on top of which a scene of the authored application is to be
rendered. In some embodiments, the process assumes that the
boundaries of the transparent area within the image form a
shape that is of the same type but smaller than the shape ofthe
received image. For instance, when the received image is
rectangular, the process would find a smaller rectangular
shape formed by the transparent area within the received
shape.

In some embodiments, the image is in a format (e.g., .png
format) that supports transparency. As mentioned above, a
pixel of an image in such format can have an alpha value,
which, as known in the art, is a value that specifies opacity of
the pixel. An alpha value of zero means that the pixel is
completely transparent. When a complete transparent pixel is
composited with another pixel, the composite pixel will be
displayed as if that other pixel alone is displayed. An alpha
value of one means the pixel is completely non-transparent.

US 9,164,576 B2

33

Therefore, a pixel supports transparency when the pixel has
an alpha value (e.g., between 0 and 1). In some cases, not all
pixels of an image support transparency.

The first stage 2305 of FIG. 23 shows a rectangular trans-
parent area 2325 within an image 2330. The image 2330 is in
a format (e.g., .png format) that supports transparency. Every
pixel within the transparent area 2330 has an alpha value of
zero. Every pixel in an area 2335 that is outside the transpar-
ent area 2325 and inside the image 2330 does not have an
alpha value.

Next, the process 2200 identifies (at 2210) the center pixel
of the received image. Different embodiments identify the
center pixel of the received image differently. For instance, in
some embodiments, the process identifies the center pixel by
computing the geometric center of the shape that the received
image forms. The process then identifies a pixel that is nearest
to the geometric center as the center pixel of the image. In
other embodiments, the process assigns coordinate values in
two-dimensional space (e.g., x and y coordinate values) to
each pixel of the image and takes an average (e.g., arithmetic
mean) of the values assigned to all pixels of the image. In
these embodiments, the process will identify the image with
coordinate values that are closest to the average coordinate
values. The second stage 2310 of F1G. 23 shows a center pixel
2340 of the image 2330 depicted as an x mark. As mentioned
above, the center pixel 2340 has an alpha value.

The process 2200 then determines (at 2215) whether the
center pixel of the received image supports transparency. In
some embodiments, the process 2200 determines that the
center pixel of the received image supports transparency
when the center pixel has an alpha value that is less than a
certain threshold value that is less than 1.0. For instance,
when the center pixel has an alpha value of 0.5 or less, the
process 2200 in some embodiments determines that the cen-
ter pixel supports transparency. When the process 2200 deter-
mines (at 2215) that the center pixel does not support trans-
parency, the process ends.

When the process 2200 determines (at 2215) that the center
pixel supports transparency, the process in some embodi-
ments proceeds to 2220 to select a direction from the center
pixel. As mentioned above, the process in some embodiments
assumes that the type of shape that the received image forms
is the type of shape that the transparent area forms. The
process selects a direction based on the type of shape that the
transparent area would form. For instance, when the received
image is rectangular, the process would select one of four
perpendicular directions to find the four edges of the rectan-
gular shape that the transparent area would form within the
received image. The third stage 2315 of FIG. 23 shows four
perpendicular directions 2345, 2350, 2355, and 2360
depicted as arrows pointing away from the center pixel 2340.

Next, the process 2200 selects (at 2225) the next pixel in
the selected direction. The process 2200 then determines (at
2230) whether the selected pixel supports transparency.
When the process 2200 determines (at 2230) that the selected
pixel does not support transparency, the process 2200 loops
back to 2225 to select the pixel that is next to the currently
selected pixel in the selected direction. When the process
2200 determines (at 2230) that the selected pixel does not
support transparency, the process 2200 sets (at 2235) the
selected pixel as a boundary pixel, which the process will use
to draw a boundary. Next, the process 2200 determines (at
2240) whether there are more directions from the center pixel
in which to examine pixels to find boundaries. When the
process 2200 determines (at 2240) that there are more direc-
tions in which to examine pixels to find boundaries, the pro-
cess loops back to 2220 to select another direction. The third

10

30

40

45

50

34
stage 2315 of FIG. 23 shows four pixels 2365, 2370, 2375,
and 2380 depicted as hollow circles. The pixels 2365-2380
are the first pixels that do not have an alpha value in the
directions 2345-2360, respectively.

When the process 2200 determines (at 2240) that there are
no more directions in which to examine pixels to find bound-
aries, the process 2200 proceeds to 2245 to draw boundaries
based on the boundary pixels set at 2235. For instance, the
process 2200 would draw a rectangular shape based on the
four boundary pixels that the process would have set at 2235.
The fourth stage 2320 of FIG. 23 shows a rectangular shape
drawn based on the pixels 2365-2380. The process 2200
identifies the pixels forming the drawn boundaries as pixels
that define the boundaries of the transparent area.

The specific operations of the process 2200 may not be
performed in the exact order shown and described. The spe-
cific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or as
part of a larger macro process. For instance, the process 2200
does not have to find and set a boundary pixel for one selected
direction at a time. Moreover, the process 2200 is described in
the context of having received a rectangular image. However,
one of the ordinary skill in the art will realize that the process
2200 would be applicable for finding boundaries of other
types of shapes (e.g., a triangular shape, an pentagonal shape,
and other polygonal shapes, etc.).

Also, the process 2200 in some embodiments detects
boundaries of a transparent area by expanding the boundaries
from the determined center pixel in certain directions. Alter-
natively, or conjunctively, the process in some embodiments
expands the boundaries by recursively examining all neigh-
boring pixels of the already examined pixels. That is, the
process may examine the neighboring pixels of the deter-
mined center pixel to see whether the neighboring pixels are
transparent and then include those pixels within the bound-
aries. The process repeats these operations until all contigu-
ous transparent pixels are included within the expanding
boundaries. Moreover, the process in some embodiments
may not expand the boundaries from the determined center
pixel. For instance, the process may select a pixel from the
received image, determine whether the pixel supports trans-
parency and is transparent, and then expand the boundaries of
the transparent area from that pixel.

V. Authoring Platform Architecture

FIG. 24 illustrates the software architecture of an authoring
platform 2400 for building applications. As shown, the
authoring platform of some embodiments includes a user
interface 2405, an event definer 2410, a conditions definer
2411, a response definer 2415, a condition-event associator
2420, an event-response associator 2425, an entity-behavior
associator 2430, an entity-scene associator 2435, a key-in-
dexed graph manager 2440, a key indices manager 2445, a
scene preview area manager 2450, a boundary detector 2455,
and atransparency checker 2460. The authoring platform also
includes a conditions repository 2465, an events repository
2470, a responses repository 2475, a behaviors repository
2480, an entities repository 2485, a scenes repository 2490,
and a scene templates repository 2495, and a build application
repository 2499.

The authoring platform 2400 provides the user with the
user interface 2405 through which the user can input data for
authoring the application. The user interface 2405 is similar
to the user interface 205 of FIG. 2. Through the user interface
2405, the user can specify events and responses and associate
the events and responses. In addition, the user also can specify

US 9,164,576 B2

35

conditions for an event to trigger responses associated with
the event. The user can also specify entities for scenes of an
interactive application. The user interface 2405 sends the
received input data to other modules of the authoring platform
2400. For instance, the user interface 2405 sends the received
data to the event definer 2410 and the response definer 2415.

The event definer 2410 defines events based on the received
data. The event definer 2410 is similar to the event definer 210
of FIG. 2, in that the event definer 2410 creates an event based
on the received data. For instance, based on the received data,
the event definer creates an event that encapsulates an appli-
cation user’s touching multiple locations of a scene. The
event definer 2410 stores the defined events in the events
repository 2470, which is a cache or other persistent storage
medium in some embodiments.

The conditions definer 2411 defines conditions based on
the received data. The user of the authoring platform specifies
conditions through the user interface 2405. For instance, the
user interface may provide the predicate editor 1505 of Figure
Q. As described above, conditions are associated with an
event such that the event can trigger responses only if the
conditions associated with the event are satisfied when the
authored application is running. Conditions can be added to a
predefined event or an event defined by the authoring plat-
form user. As mentioned above, the authoring platform 2400
in some embodiments provides predefined events. Examples
of pre-defined events include a touchdown event, a touchup
event, etc. The conditions definer 2412 stores the defined
conditions in the conditions repository 2465, which is a cache
or other persistent storage medium in some embodiments.

The response definer 2415 is similar to the response definer
215 of FIG. 2 in that the response definer 2415 defines dif-
ferent types responses based on the received data and defines
response handlers for these different types of responses. The
response definer 2415 stores defined responses and response
handlers in the responses repository 2475, which is cache or
other persistent storage medium in some embodiments. In
addition, similar to the response definer 215, the response
definer 2415 uses the conformance manager 2416 to define
different types of responses in such a way that the responses
of different types can communicate with each other. More-
over, in some embodiments, the authoring platform 2400
includes the response definer 2415 for each of the different
types of responses so that each response definer 2415 defines
response(s) of one type.

The condition-event associator 2420 associates an event
with one or more conditions based on the received data. For
instance, the condition-event associator 2420 associates a
condition that the user specified through the predicate editor
1505 of Figure Q with a touchdown event. The condition-
event associator 2420 stores data specifying associations of
events and conditions either in the conditions repository 2465
or in the events repository 2470. That is, in some embodi-
ments a condition may have a reference to the event with
which the condition is associated. An event may also have
references to conditions with which the event is associated.
Or, both events and conditions have references to each other.

The event-response associator 2425 is similar to the event-
response associator 230 in that the event-response defines
behaviors by associating each event with one or more
responses based on the received data. As mentioned above, an
event may be associated with responses of different types.
The event-response associator 2425 stores defined behaviors
in the behaviors repository 2480, which is cache or other
persistent storage medium in some embodiments.

The entity-behavior associator 2435 is similar to the entity-
behavior associator 240 of Figure A in that the entity-behav-

15

20

30

35

40

45

50

55

60

65

36

ior associator 2435 associates an entity with one or more
behaviors per user’s specification. As mentioned above, enti-
ties are graphical objects

The entity-behavior associator 2435 of some embodiments
stores the associations of behaviors and entities in the entities
repository 2485, which is a cache or other persistent storage
medium in some embodiments. In some embodiments, an
entity has references to the behaviors that are associated with
the entity. A behavior may have references to entities that are
associated with the behavior. In some embodiments, one
behavior may be associated with one or more entities.

The entity-scene associator 2435 associates entities with
scenes. For instance, when a user drops an entity on a scene
through the user interface 2405, the entity-scene associator
2435 associates the entity with the scene. The entity-scene
associator 2435 stores data specifying associations of entities
and scenes either in the entities repository 2485 or in the
scenes repository 2490. That is, in some embodiments an
entity may have a reference to the scene that is associated with
the entity. The scene may also have references to entities that
are associated with the scene. Or, both entities and scenes
may have references to each other. The scenes repository
2490, which is a cache or other persistent storage medium in
some embodiments, stores scenes that may become part of
authored applications. The authored applications are stored in
the authored applications repository 2499, which is cache or
other persistent storage medium in some embodiments.

The key-indexed graph manager 2440 manages key-in-
dexed graphs for entities of scenes. The key-indexed graph
manager 2440 receives user inputs through the user interface
2405 and creates and/or modifies key-indexed graphs for the
entities of the scenes. The key-indexed graph manager 2440
retrieves scenes from the scenes repository 2490. The key-
indexed graph manager 2440 also uses the key indices man-
ager 2445 to create and/or modify key indices for the entities
of the scenes.

The scenes manager 2450 manages scenes. The scenes
manager 2450 creates and/or modifies scenes based on the
user’s inputs. For instance, the scenes manager 2450 creates
a scene with a scene template that the user has chosen. The
scene templates in some embodiments are images provided
by a manufacturer of a device on which an application
authored by the authoring platform 2400 would execute. As
described above, such images support transparency. The
scene templates may be stored in the scene templates reposi-
tory 2495, which is a cache or other persistent storage
medium in some embodiments. The scenes manager 2450 in
some embodiments uses the boundary detector 2455 to iden-
tify boundaries of transparent areas within the scene tem-
plates. The boundary detector 2455 in some embodiments
uses the transparency checker 2460 to determine whether
pixels of the scene templates support transparency. As men-
tioned above, a pixel with an alpha value supports transpar-
ency.

V1. Electronic Systems

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more com-
putational or processing unit(s) (e.g., one or more processors,
cores of processors, or other processing units), they cause the
processing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, flash drives, random access
memory (RAM) chips, hard drives, erasable programmable
read only memories (EPROMs), electrically erasable pro-

US 9,164,576 B2

37

grammable read-only memories (EEPROMs), etc. The com-
puter readable media does not include carrier waves and
electronic signals passing wirelessly or over wired connec-
tions.

In this specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage which can be read into
memory for processing by a processor. Also, in some embodi-
ments, multiple software inventions can be implemented as
sub-parts of a larger program while remaining distinct soft-
ware inventions. In some embodiments, multiple software
inventions can also be implemented as separate programs.
Finally, any combination of separate programs that together
implement a software invention described here is within the
scope of the invention. In some embodiments, the software
programs, when installed to operate on one or more electronic
systems, define one or more specific machine implementa-
tions that execute and perform the operations of the software
programs.

FIG. 25 conceptually illustrates an electronic system 2500
with which some embodiments of the invention are imple-
mented. The electronic system 2500 may be a computer (e.g.,
a desktop computer, personal computer, tablet computer,
etc.), phone, PDA, or any other sort of electronic device. Such
an electronic system includes various types of computer read-
able media and interfaces for various other types of computer
readable media. Electronic system 2500 includes a bus 2505,
processing unit(s) 2510, a graphics processing unit (GPU)
2515, a system memory 2520, a network 2525, a read-only
memory 2530, a permanent storage device 2535, input
devices 2540, and output devices 2545.

Thebus 2505 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 2500. For
instance, the bus 2505 communicatively connects the pro-
cessing unit(s) 2510 with the read-only memory 2530, the
GPU 2515, the system memory 2520, and the permanent
storage device 2535.

From these various memory units, the processing unit(s)
2510 retrieves instructions to execute and data to process in
order to execute the processes of the invention. The process-
ing unit(s) may be a single processor or a multi-core processor
in different embodiments. Some instructions are passed to
and executed by the GPU 2515. The GPU 2515 can offload
various computations or complement the image processing
provided by the processing unit(s) 2510. In some embodi-
ments, such functionality can be provided using Corelmage’s
kernel shading language.

The read-only-memory (ROM) 2530 stores static data and
instructions that are needed by the processing unit(s) 2510
and other modules of the electronic system. The permanent
storage device 2535, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 2500 is off. Some embodiments of the invention use a
mass-storage device (such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
2535.

Other embodiments use a removable storage device (such
as a floppy disk, flash memory device, etc., and its corre-
sponding disk drive) as the permanent storage device. Like
the permanent storage device 2535, the system memory 2520
is a read-and-write memory device. However, unlike storage
device 2535, the system memory 2520 is a volatile read-and-
write memory, such as random access memory. The system
memory 2520 stores some of the instructions and data that the
processor needs at runtime. In some embodiments, the inven-

10

15

20

25

30

35

40

45

50

55

60

65

38

tion’s processes are stored in the system memory 2520, the
permanent storage device 2535, and/or the read-only memory
2530. For example, the various memory units include instruc-
tions for processing multimedia clips in accordance with
some embodiments. From these various memory units, the
processing unit(s) 2510 retrieves instructions to execute and
data to process in order to execute the processes of some
embodiments.

The bus 2505 also connects to the input and output devices
2540 and 2545. The input devices 2540 enable the user to
communicate information and select commands to the elec-
tronic system. The input devices 2540 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”), cameras (e.g., webcams), microphones or similar
devices for receiving voice commands, etc. The output
devices 2545 display images generated by the electronic sys-
tem or otherwise output data. The output devices 2545
include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD), as well as
speakers or similar audio output devices. Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

The present application describes a graphical user interface
that provides users with numerous ways to perform different
sets of operations and functionalities. In some embodiments,
these operations and functionalities are performed based on
different commands that are received from users through
different input devices (e.g., keyboard, trackpad, touchpad,
mouse, etc.). For example, the present application illustrates
the use of a cursor in the graphical user interface to control
(e.g., select, move) objects in the graphical user interface.
However, in some embodiments, objects in the graphical user
interface can also be controlled or manipulated through other
controls, such as touch control. In some embodiments, touch
control is implemented through an input device that can
detect the presence and location of touch on a display of the
device. An example of such a device is a touch screen device.
In some embodiments, with touch control, a user can directly
manipulate objects by interacting with the graphical user
interface that is displayed on the display of the touch screen
device. For instance, a user can select a particular objectin the
graphical user interface by simply touching that particular
object on the display of the touch screen device. As such,
when touch control is utilized, a cursor may not even be
provided for enabling selection of an object of a graphical
user interface in some embodiments. However, when a cursor
is provided in a graphical user interface, touch control can be
used to control the cursor in some embodiments.

Finally, as shown in FIG. 25, bus 2505 also couples elec-
tronic system 2500 to a network 2525 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or a
network of networks, such as the Internet. Any or all compo-
nents of electronic system 2500 may be used in conjunction
with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-read-
able storage media, machine-readable media, or machine-
readable storage media). Some examples of such computer-
readable media include RAM, ROM, read-only compact
discs (CD-ROM), recordable compact discs (CD-R), rewrit-
able compact discs (CD-RW), read-only digital versatile
discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of
recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW,

US 9,164,576 B2

39

DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or solid state hard
drives, read-only and recordable Blu-Ray® discs, ultra den-
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com-
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated cir-
cuits, such as application specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs). In some embodi-
ments, such integrated circuits execute instructions that are
stored on the circuit itself. In addition, some embodiments
execute software stored in programmable logic devices
(PLDs), ROM, or RAM devices.

As used in this specification and any claims of this appli-
cation, the terms “computer”, “server”, “processor”, and
“memory” all refer to electronic or other technological
devices. These terms exclude people or groups of people. For
the purposes ofthe specification, the terms display or display-
ing means displaying on an electronic device. As used in this
specification and any claims of this application, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium” are entirely restricted to
tangible, physical objects that store information in a form that
is readable by a computer. These terms exclude any wireless
signals, wired download signals, and any other ephemeral
signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. In
addition, a number of the figures (including FIGS. 4, 12, 13,
13, 20, and 22) conceptually illustrate processes. The specific
operations of these processes may not be performed in the
exact order shown and described. The specific operations may
not be performed in one continuous series of operations, and
different specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details, but rather is to be defined by the
appended claims.

What is claimed is:
1. An authoring system for building an application having
a set of graphical objects, the authoring system comprising:
a computer processor; and
a memory containing instructions that, when executed,
cause the computer processor to:
receive a first input defining a first operation that is to be
performed on a first graphical object of the applica-
tion, wherein the first operation, when performed,
results in a first output in a first format;
receive a second input defining a second operation that is
to be performed on a second graphical object of the
application, wherein:
the second operation is different than the first opera-
tion, and

10

15

20

25

30

35

40

45

50

55

60

40

the second operation requires input parameters in a
second format, different than the first format, to
perform the second operation;

receive a third input involving a user gesture of dragging
and dropping the first graphical object onto the second
graphical object, thereby automatically associating
the first operation performed on the first graphical
object with the second operation performed on the
second graphical object; and

generate the application such that the second operation
is performed according to the first output of the first
operation.

2. The authoring system of claim 1, wherein the instruc-
tions further cause the computer processor to:

present a graphical user authoring interface enabling a user

to specify inputs to build the application, wherein the
first input, second input and third input are received as a
result of user interaction with the graphical user author-
ing interface.

3. The authoring system of claim 1, wherein the first input
further defines a first user interaction event, wherein, when
the application is executed, detection of the first user interac-
tion event causes performance of the first operation.

4. The authoring system of claim 1, wherein the first opera-
tion comprises at least one selected from a group consisting of
animating the first graphical object, running a script, execut-
ing a compiled code and playing back an audio file.

5. The authoring system of claim 1, wherein the second
graphical object is the first graphical object.

6. The authoring system of claim 1, further comprising a
conformance module configured to determine that the second
format does not match the input parameters and to convert the
input parameters in a second format into a conformance pro-
tocol and convert the first output in a first format into input
parameters in the conformance protocol.

7. A computer-implemented method for building an appli-
cation having a set of graphical objects, the method compris-
ing:

receiving, by a computer processor, a first input defining a

first operation that is to be performed on a first graphical
object of the application, wherein the first operation,
when performed, results in a first output in a first format;
receiving, by the computer processor, a second input defin-
ing a second operation that is to be performed on a
second graphical object of the application, wherein:
the second operation is different than the first operation,
and
the second operation requires input parameters in a sec-
ond format, different than the first format, to perform
the second operation;
receiving, by the computer processor, a third input involv-
ing a user gesture of dragging and dropping the first
graphical object onto the second graphical object,
thereby automatically associating the first operation per-
formed on the first graphical object with the second
operation performed on the second graphical object; and

generating, by the computer processor, the application
such that the second operation according to the first
output of the first operation.

8. The computer-implemented method of claim 7, further
comprising:

presenting a graphical user authoring interface enabling a

user to specify inputs to build the application, wherein
the first input, second input and third input are received
as a result of user interaction with the graphical user
authoring interface.

US 9,164,576 B2

41

9. The computer-implemented method of claim 7, wherein
the first input further defines a first user interaction event,
wherein, when the application is executed, detection of the
first user interaction event causes performance of the first
operation.

10. The computer-implemented method of claim 7,
wherein the first operation comprises at least one selected
from a group consisting of animating the first graphical
object, running a script, executing a compiled code and play-
ing back an audio file.

11. The computer-implemented method of claim 7,
wherein the second graphical object is the first graphical
object.

12. The computer-implemented method of claim 7, further
comprising:

determining, using a conformance module, that the second

format does not match the input parameters; and

converting the input parameters in a second format into a

conformance protocol and convert the first output in a
first format into input parameters in the conformance
protocol.

13. A non-transitory computer-readable medium contain-
ing instructions for building an application having a set of
graphical objects, the instructions, when executed by a com-
puting device, cause the computing device to:

receive a first input defining a first operation that is to be

performed on a first graphical object of the application,
wherein the first operation, when performed, results in a
first output in a first format;

receive a second input defining a second operation that is to

be performed on a second graphical object of the appli-

cation, wherein:

the second operation is different than the first operation,
and

the second operation requires input parameters in a sec-
ond format, different than the first format, to perform
the second operation;

10

15

30

35

42

receive a third input involving a user gesture of dragging
and dropping the first graphical object onto the second
graphical object, thereby automatically associating the
first operation performed on the first graphical object
with the second operation performed on the second
graphical object; and

generate the application such that the second operation

according to the first output of the first operation.

14. The non-transitory computer-readable medium of
claim 13, wherein the instructions further cause the comput-
ing device to:

present a graphical user authoring interface enabling a user

to specify inputs to build the application, wherein the
first input, second input and third input are received as a
result of user interaction with the graphical user author-
ing interface.

15. The non-transitory computer-readable medium of
claim 13, wherein the first input further defines a first user
interaction event, wherein, when the application is executed,
detection of the first user interaction event causes perfor-
mance of the first operation.

16. The non-transitory computer-readable medium of
claim 13, wherein the first operation comprises at least one
selected from a group consisting of animating the first graphi-
cal object, running a script, executing a compiled code and
playing back an audio file.

17. The non-transitory computer-readable medium of
claim 13, wherein the second graphical object is the first
graphical object.

18. The non-transitory computer-readable medium of
claim 13, wherein the instructions further cause the comput-
ing device to call a conformance module configured to deter-
mine that the second format does not match the input param-
eters and to convert the input parameters in a second format
into a conformance protocol and convert the first output in a
first format into input parameters in the conformance proto-
col.

